| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoi | Structured version Visualization version GIF version | ||
| Description: Value of inverse endomorphism. (Contributed by NM, 12-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendoi.i | ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) |
| tendoi.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| tendoi | ⊢ (𝑆 ∈ 𝐸 → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6825 | . . . 4 ⊢ (𝑢 = 𝑆 → (𝑢‘𝑔) = (𝑆‘𝑔)) | |
| 2 | 1 | cnveqd 5822 | . . 3 ⊢ (𝑢 = 𝑆 → ◡(𝑢‘𝑔) = ◡(𝑆‘𝑔)) |
| 3 | 2 | mpteq2dv 5189 | . 2 ⊢ (𝑢 = 𝑆 → (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔)) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
| 4 | tendoi.i | . . 3 ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) | |
| 5 | 4 | tendoicbv 40772 | . 2 ⊢ 𝐼 = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) |
| 6 | tendoi.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 7 | 3, 5, 6 | mptfvmpt 7168 | 1 ⊢ (𝑆 ∈ 𝐸 → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5176 ◡ccnv 5622 ‘cfv 6486 LTrncltrn 40080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 |
| This theorem is referenced by: tendoi2 40774 tendoicl 40775 |
| Copyright terms: Public domain | W3C validator |