Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoi Structured version   Visualization version   GIF version

Theorem tendoi 38083
 Description: Value of inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoi.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
tendoi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoi (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
Distinct variable groups:   𝐸,𝑠   𝑓,𝑔,𝑠,𝑇   𝑓,𝑊,𝑔,𝑠   𝑆,𝑔
Allowed substitution hints:   𝑆(𝑓,𝑠)   𝐸(𝑓,𝑔)   𝐼(𝑓,𝑔,𝑠)   𝐾(𝑓,𝑔,𝑠)

Proof of Theorem tendoi
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6648 . . . 4 (𝑢 = 𝑆 → (𝑢𝑔) = (𝑆𝑔))
21cnveqd 5714 . . 3 (𝑢 = 𝑆(𝑢𝑔) = (𝑆𝑔))
32mpteq2dv 5129 . 2 (𝑢 = 𝑆 → (𝑔𝑇(𝑢𝑔)) = (𝑔𝑇(𝑆𝑔)))
4 tendoi.i . . 3 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
54tendoicbv 38082 . 2 𝐼 = (𝑢𝐸 ↦ (𝑔𝑇(𝑢𝑔)))
6 tendoi.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
73, 5, 6mptfvmpt 6972 1 (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2112   ↦ cmpt 5113  ◡ccnv 5522  ‘cfv 6328  LTrncltrn 37390 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336 This theorem is referenced by:  tendoi2  38084  tendoicl  38085
 Copyright terms: Public domain W3C validator