Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoi Structured version   Visualization version   GIF version

Theorem tendoi 38808
Description: Value of inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoi.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
tendoi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoi (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
Distinct variable groups:   𝐸,𝑠   𝑓,𝑔,𝑠,𝑇   𝑓,𝑊,𝑔,𝑠   𝑆,𝑔
Allowed substitution hints:   𝑆(𝑓,𝑠)   𝐸(𝑓,𝑔)   𝐼(𝑓,𝑔,𝑠)   𝐾(𝑓,𝑔,𝑠)

Proof of Theorem tendoi
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6773 . . . 4 (𝑢 = 𝑆 → (𝑢𝑔) = (𝑆𝑔))
21cnveqd 5784 . . 3 (𝑢 = 𝑆(𝑢𝑔) = (𝑆𝑔))
32mpteq2dv 5176 . 2 (𝑢 = 𝑆 → (𝑔𝑇(𝑢𝑔)) = (𝑔𝑇(𝑆𝑔)))
4 tendoi.i . . 3 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
54tendoicbv 38807 . 2 𝐼 = (𝑢𝐸 ↦ (𝑔𝑇(𝑢𝑔)))
6 tendoi.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
73, 5, 6mptfvmpt 7104 1 (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cmpt 5157  ccnv 5588  cfv 6433  LTrncltrn 38115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  tendoi2  38809  tendoicl  38810
  Copyright terms: Public domain W3C validator