Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoi Structured version   Visualization version   GIF version

Theorem tendoi 40773
Description: Value of inverse endomorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendoi.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
tendoi.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoi (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
Distinct variable groups:   𝐸,𝑠   𝑓,𝑔,𝑠,𝑇   𝑓,𝑊,𝑔,𝑠   𝑆,𝑔
Allowed substitution hints:   𝑆(𝑓,𝑠)   𝐸(𝑓,𝑔)   𝐼(𝑓,𝑔,𝑠)   𝐾(𝑓,𝑔,𝑠)

Proof of Theorem tendoi
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6825 . . . 4 (𝑢 = 𝑆 → (𝑢𝑔) = (𝑆𝑔))
21cnveqd 5822 . . 3 (𝑢 = 𝑆(𝑢𝑔) = (𝑆𝑔))
32mpteq2dv 5189 . 2 (𝑢 = 𝑆 → (𝑔𝑇(𝑢𝑔)) = (𝑔𝑇(𝑆𝑔)))
4 tendoi.i . . 3 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
54tendoicbv 40772 . 2 𝐼 = (𝑢𝐸 ↦ (𝑔𝑇(𝑢𝑔)))
6 tendoi.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
73, 5, 6mptfvmpt 7168 1 (𝑆𝐸 → (𝐼𝑆) = (𝑔𝑇(𝑆𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5176  ccnv 5622  cfv 6486  LTrncltrn 40080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by:  tendoi2  40774  tendoicl  40775
  Copyright terms: Public domain W3C validator