Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0plr Structured version   Visualization version   GIF version

Theorem tendo0plr 40439
Description: Property of the additive identity endormorphism. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
tendo0.b 𝐵 = (Base‘𝐾)
tendo0.h 𝐻 = (LHyp‘𝐾)
tendo0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendo0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendo0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
tendo0pl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendo0plr (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆𝑃𝑂) = 𝑆)
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓   𝑡,𝑠,𝐸   𝑇,𝑠,𝑡,𝑓   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝐵(𝑡,𝑠)   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑂(𝑡,𝑓,𝑠)

Proof of Theorem tendo0plr
StepHypRef Expression
1 tendo0.b . . . . 5 𝐵 = (Base‘𝐾)
2 tendo0.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 tendo0.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 tendo0.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
5 tendo0.o . . . . 5 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
61, 2, 3, 4, 5tendo0cl 40437 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
76adantr 479 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑂𝐸)
8 tendo0pl.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
92, 3, 4, 8tendoplcom 40429 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑂𝐸) → (𝑆𝑃𝑂) = (𝑂𝑃𝑆))
107, 9mpd3an3 1458 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆𝑃𝑂) = (𝑂𝑃𝑆))
111, 2, 3, 4, 5, 8tendo0pl 40438 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑂𝑃𝑆) = 𝑆)
1210, 11eqtrd 2765 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆𝑃𝑂) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cmpt 5235   I cid 5578  cres 5683  ccom 5685  cfv 6553  (class class class)co 7423  cmpo 7425  Basecbs 17208  HLchlt 38996  LHypclh 39631  LTrncltrn 39748  TEndoctendo 40399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-riotaBAD 38599
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-1st 8002  df-2nd 8003  df-undef 8287  df-map 8856  df-proset 18315  df-poset 18333  df-plt 18350  df-lub 18366  df-glb 18367  df-join 18368  df-meet 18369  df-p0 18445  df-p1 18446  df-lat 18452  df-clat 18519  df-oposet 38822  df-ol 38824  df-oml 38825  df-covers 38912  df-ats 38913  df-atl 38944  df-cvlat 38968  df-hlat 38997  df-llines 39145  df-lplanes 39146  df-lvols 39147  df-lines 39148  df-psubsp 39150  df-pmap 39151  df-padd 39443  df-lhyp 39635  df-laut 39636  df-ldil 39751  df-ltrn 39752  df-trl 39806  df-tendo 40402
This theorem is referenced by:  cdlemn6  40849  dihopelvalcpre  40895
  Copyright terms: Public domain W3C validator