Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termco Structured version   Visualization version   GIF version

Theorem termco 49450
Description: The object of a terminal category. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
termco (𝜑 𝐵𝐵)

Proof of Theorem termco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 termcbas.c . . 3 (𝜑𝐶 ∈ TermCat)
2 termcbas.b . . 3 𝐵 = (Base‘𝐶)
31, 2termcbas 49449 . 2 (𝜑 → ∃𝑥 𝐵 = {𝑥})
4 unieq 4884 . . . . . 6 (𝐵 = {𝑥} → 𝐵 = {𝑥})
5 unisnv 4893 . . . . . 6 {𝑥} = 𝑥
64, 5eqtrdi 2781 . . . . 5 (𝐵 = {𝑥} → 𝐵 = 𝑥)
7 vsnid 4629 . . . . 5 𝑥 ∈ {𝑥}
86, 7eqeltrdi 2837 . . . 4 (𝐵 = {𝑥} → 𝐵 ∈ {𝑥})
9 id 22 . . . 4 (𝐵 = {𝑥} → 𝐵 = {𝑥})
108, 9eleqtrrd 2832 . . 3 (𝐵 = {𝑥} → 𝐵𝐵)
1110exlimiv 1930 . 2 (∃𝑥 𝐵 = {𝑥} → 𝐵𝐵)
123, 11syl 17 1 (𝜑 𝐵𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109  {csn 4591   cuni 4873  cfv 6513  Basecbs 17185  TermCatctermc 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-termc 49442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator