Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termco Structured version   Visualization version   GIF version

Theorem termco 49642
Description: The object of a terminal category. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
termco (𝜑 𝐵𝐵)

Proof of Theorem termco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 termcbas.c . . 3 (𝜑𝐶 ∈ TermCat)
2 termcbas.b . . 3 𝐵 = (Base‘𝐶)
31, 2termcbas 49641 . 2 (𝜑 → ∃𝑥 𝐵 = {𝑥})
4 unieq 4871 . . . . . 6 (𝐵 = {𝑥} → 𝐵 = {𝑥})
5 unisnv 4880 . . . . . 6 {𝑥} = 𝑥
64, 5eqtrdi 2784 . . . . 5 (𝐵 = {𝑥} → 𝐵 = 𝑥)
7 vsnid 4617 . . . . 5 𝑥 ∈ {𝑥}
86, 7eqeltrdi 2841 . . . 4 (𝐵 = {𝑥} → 𝐵 ∈ {𝑥})
9 id 22 . . . 4 (𝐵 = {𝑥} → 𝐵 = {𝑥})
108, 9eleqtrrd 2836 . . 3 (𝐵 = {𝑥} → 𝐵𝐵)
1110exlimiv 1931 . 2 (∃𝑥 𝐵 = {𝑥} → 𝐵𝐵)
123, 11syl 17 1 (𝜑 𝐵𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2113  {csn 4577   cuni 4860  cfv 6489  Basecbs 17127  TermCatctermc 49633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-termc 49634
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator