| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termco | Structured version Visualization version GIF version | ||
| Description: The object of a terminal category. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| termcbas.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| termco | ⊢ (𝜑 → ∪ 𝐵 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | termcbas.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | 1, 2 | termcbas 49512 | . 2 ⊢ (𝜑 → ∃𝑥 𝐵 = {𝑥}) |
| 4 | unieq 4865 | . . . . . 6 ⊢ (𝐵 = {𝑥} → ∪ 𝐵 = ∪ {𝑥}) | |
| 5 | unisnv 4874 | . . . . . 6 ⊢ ∪ {𝑥} = 𝑥 | |
| 6 | 4, 5 | eqtrdi 2782 | . . . . 5 ⊢ (𝐵 = {𝑥} → ∪ 𝐵 = 𝑥) |
| 7 | vsnid 4611 | . . . . 5 ⊢ 𝑥 ∈ {𝑥} | |
| 8 | 6, 7 | eqeltrdi 2839 | . . . 4 ⊢ (𝐵 = {𝑥} → ∪ 𝐵 ∈ {𝑥}) |
| 9 | id 22 | . . . 4 ⊢ (𝐵 = {𝑥} → 𝐵 = {𝑥}) | |
| 10 | 8, 9 | eleqtrrd 2834 | . . 3 ⊢ (𝐵 = {𝑥} → ∪ 𝐵 ∈ 𝐵) |
| 11 | 10 | exlimiv 1931 | . 2 ⊢ (∃𝑥 𝐵 = {𝑥} → ∪ 𝐵 ∈ 𝐵) |
| 12 | 3, 11 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝐵 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {csn 4571 ∪ cuni 4854 ‘cfv 6476 Basecbs 17115 TermCatctermc 49504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-termc 49505 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |