Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcbas2 Structured version   Visualization version   GIF version

Theorem termcbas2 49228
Description: The base of a terminal category is given by its object. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
Assertion
Ref Expression
termcbas2 (𝜑𝐵 = {𝑋})

Proof of Theorem termcbas2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 termcbas.c . . 3 (𝜑𝐶 ∈ TermCat)
2 termcbas.b . . 3 𝐵 = (Base‘𝐶)
31, 2termcbas 49227 . 2 (𝜑 → ∃𝑥 𝐵 = {𝑥})
4 simpr 484 . . 3 ((𝜑𝐵 = {𝑥}) → 𝐵 = {𝑥})
5 termcbasmo.x . . . . . 6 (𝜑𝑋𝐵)
65adantr 480 . . . . 5 ((𝜑𝐵 = {𝑥}) → 𝑋𝐵)
76, 4eleqtrd 2835 . . . 4 ((𝜑𝐵 = {𝑥}) → 𝑋 ∈ {𝑥})
8 elsni 4616 . . . . 5 (𝑋 ∈ {𝑥} → 𝑋 = 𝑥)
98sneqd 4611 . . . 4 (𝑋 ∈ {𝑥} → {𝑋} = {𝑥})
107, 9syl 17 . . 3 ((𝜑𝐵 = {𝑥}) → {𝑋} = {𝑥})
114, 10eqtr4d 2772 . 2 ((𝜑𝐵 = {𝑥}) → 𝐵 = {𝑋})
123, 11exlimddv 1934 1 (𝜑𝐵 = {𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {csn 4599  cfv 6528  Basecbs 17215  TermCatctermc 49219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-iota 6481  df-fv 6536  df-termc 49220
This theorem is referenced by:  termcfuncval  49278  diag1f1olem  49279  termcnatval  49281  diag2f1olem  49282
  Copyright terms: Public domain W3C validator