| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcbas2 | Structured version Visualization version GIF version | ||
| Description: The base of a terminal category is given by its object. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcbas.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| termcbasmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| termcbas2 | ⊢ (𝜑 → 𝐵 = {𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | termcbas.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | 1, 2 | termcbas 49346 | . 2 ⊢ (𝜑 → ∃𝑥 𝐵 = {𝑥}) |
| 4 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = {𝑥}) → 𝐵 = {𝑥}) | |
| 5 | termcbasmo.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 = {𝑥}) → 𝑋 ∈ 𝐵) |
| 7 | 6, 4 | eleqtrd 2837 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = {𝑥}) → 𝑋 ∈ {𝑥}) |
| 8 | elsni 4623 | . . . . 5 ⊢ (𝑋 ∈ {𝑥} → 𝑋 = 𝑥) | |
| 9 | 8 | sneqd 4618 | . . . 4 ⊢ (𝑋 ∈ {𝑥} → {𝑋} = {𝑥}) |
| 10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = {𝑥}) → {𝑋} = {𝑥}) |
| 11 | 4, 10 | eqtr4d 2774 | . 2 ⊢ ((𝜑 ∧ 𝐵 = {𝑥}) → 𝐵 = {𝑋}) |
| 12 | 3, 11 | exlimddv 1935 | 1 ⊢ (𝜑 → 𝐵 = {𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4606 ‘cfv 6536 Basecbs 17233 TermCatctermc 49338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-termc 49339 |
| This theorem is referenced by: termcfuncval 49397 diag1f1olem 49398 termcnatval 49400 diag2f1olem 49401 |
| Copyright terms: Public domain | W3C validator |