Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcbas2 Structured version   Visualization version   GIF version

Theorem termcbas2 49153
Description: The base of a terminal category is given by its object. (Contributed by Zhi Wang, 20-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
termcbasmo.x (𝜑𝑋𝐵)
Assertion
Ref Expression
termcbas2 (𝜑𝐵 = {𝑋})

Proof of Theorem termcbas2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 termcbas.c . . 3 (𝜑𝐶 ∈ TermCat)
2 termcbas.b . . 3 𝐵 = (Base‘𝐶)
31, 2termcbas 49152 . 2 (𝜑 → ∃𝑥 𝐵 = {𝑥})
4 simpr 484 . . 3 ((𝜑𝐵 = {𝑥}) → 𝐵 = {𝑥})
5 termcbasmo.x . . . . . 6 (𝜑𝑋𝐵)
65adantr 480 . . . . 5 ((𝜑𝐵 = {𝑥}) → 𝑋𝐵)
76, 4eleqtrd 2842 . . . 4 ((𝜑𝐵 = {𝑥}) → 𝑋 ∈ {𝑥})
8 elsni 4642 . . . . 5 (𝑋 ∈ {𝑥} → 𝑋 = 𝑥)
98sneqd 4637 . . . 4 (𝑋 ∈ {𝑥} → {𝑋} = {𝑥})
107, 9syl 17 . . 3 ((𝜑𝐵 = {𝑥}) → {𝑋} = {𝑥})
114, 10eqtr4d 2779 . 2 ((𝜑𝐵 = {𝑥}) → 𝐵 = {𝑋})
123, 11exlimddv 1934 1 (𝜑𝐵 = {𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {csn 4625  cfv 6560  Basecbs 17248  TermCatctermc 49144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-termc 49145
This theorem is referenced by:  termcfuncval  49190  diag1f1olem  49191  termcnatval  49193  diag2f1olem  49194
  Copyright terms: Public domain W3C validator