| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcbas2 | Structured version Visualization version GIF version | ||
| Description: The base of a terminal category is given by its object. (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcbas.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| termcbasmo.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| termcbas2 | ⊢ (𝜑 → 𝐵 = {𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | termcbas.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | 1, 2 | termcbas 49152 | . 2 ⊢ (𝜑 → ∃𝑥 𝐵 = {𝑥}) |
| 4 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = {𝑥}) → 𝐵 = {𝑥}) | |
| 5 | termcbasmo.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 = {𝑥}) → 𝑋 ∈ 𝐵) |
| 7 | 6, 4 | eleqtrd 2842 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 = {𝑥}) → 𝑋 ∈ {𝑥}) |
| 8 | elsni 4642 | . . . . 5 ⊢ (𝑋 ∈ {𝑥} → 𝑋 = 𝑥) | |
| 9 | 8 | sneqd 4637 | . . . 4 ⊢ (𝑋 ∈ {𝑥} → {𝑋} = {𝑥}) |
| 10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = {𝑥}) → {𝑋} = {𝑥}) |
| 11 | 4, 10 | eqtr4d 2779 | . 2 ⊢ ((𝜑 ∧ 𝐵 = {𝑥}) → 𝐵 = {𝑋}) |
| 12 | 3, 11 | exlimddv 1934 | 1 ⊢ (𝜑 → 𝐵 = {𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {csn 4625 ‘cfv 6560 Basecbs 17248 TermCatctermc 49144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-termc 49145 |
| This theorem is referenced by: termcfuncval 49190 diag1f1olem 49191 termcnatval 49193 diag2f1olem 49194 |
| Copyright terms: Public domain | W3C validator |