| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcbas | Structured version Visualization version GIF version | ||
| Description: The base of a terminal category is a singleton. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcbas.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| termcbas | ⊢ (𝜑 → ∃𝑥 𝐵 = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | termcbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | 2 | istermc 49479 | . . 3 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| 4 | 1, 3 | sylib 218 | . 2 ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| 5 | 4 | simprd 495 | 1 ⊢ (𝜑 → ∃𝑥 𝐵 = {𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {csn 4579 ‘cfv 6486 Basecbs 17139 ThinCatcthinc 49422 TermCatctermc 49477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-termc 49478 |
| This theorem is referenced by: termco 49486 termcbas2 49487 termcbasmo 49488 oppctermhom 49509 functermc 49513 termcarweu 49533 diag1f1o 49539 diag2f1o 49542 basrestermcfo 49580 |
| Copyright terms: Public domain | W3C validator |