| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcbas | Structured version Visualization version GIF version | ||
| Description: The base of a terminal category is a singleton. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcbas.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| termcbas | ⊢ (𝜑 → ∃𝑥 𝐵 = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | termcbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | 2 | istermc 49436 | . . 3 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| 4 | 1, 3 | sylib 218 | . 2 ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| 5 | 4 | simprd 495 | 1 ⊢ (𝜑 → ∃𝑥 𝐵 = {𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {csn 4585 ‘cfv 6499 Basecbs 17155 ThinCatcthinc 49379 TermCatctermc 49434 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-termc 49435 |
| This theorem is referenced by: termco 49443 termcbas2 49444 termcbasmo 49445 oppctermhom 49466 functermc 49470 termcarweu 49490 diag1f1o 49496 diag2f1o 49499 basrestermcfo 49537 |
| Copyright terms: Public domain | W3C validator |