| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > termcbas | Structured version Visualization version GIF version | ||
| Description: The base of a terminal category is a singleton. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| termcbas.c | ⊢ (𝜑 → 𝐶 ∈ TermCat) |
| termcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| termcbas | ⊢ (𝜑 → ∃𝑥 𝐵 = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcbas.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ TermCat) | |
| 2 | termcbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | 2 | istermc 49094 | . . 3 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| 4 | 1, 3 | sylib 218 | . 2 ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| 5 | 4 | simprd 495 | 1 ⊢ (𝜑 → ∃𝑥 𝐵 = {𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {csn 4624 ‘cfv 6559 Basecbs 17243 ThinCatcthinc 49040 TermCatctermc 49092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-iota 6512 df-fv 6567 df-termc 49093 |
| This theorem is referenced by: termcbasmo 49101 oppctermhom 49109 functermc 49113 |
| Copyright terms: Public domain | W3C validator |