Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcbas Structured version   Visualization version   GIF version

Theorem termcbas 49641
Description: The base of a terminal category is a singleton. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
termcbas (𝜑 → ∃𝑥 𝐵 = {𝑥})
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem termcbas
StepHypRef Expression
1 termcbas.c . . 3 (𝜑𝐶 ∈ TermCat)
2 termcbas.b . . . 4 𝐵 = (Base‘𝐶)
32istermc 49635 . . 3 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
41, 3sylib 218 . 2 (𝜑 → (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
54simprd 495 1 (𝜑 → ∃𝑥 𝐵 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  {csn 4577  cfv 6489  Basecbs 17127  ThinCatcthinc 49578  TermCatctermc 49633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-termc 49634
This theorem is referenced by:  termco  49642  termcbas2  49643  termcbasmo  49644  oppctermhom  49665  functermc  49669  termcarweu  49689  diag1f1o  49695  diag2f1o  49698  basrestermcfo  49736
  Copyright terms: Public domain W3C validator