Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termcbas Structured version   Visualization version   GIF version

Theorem termcbas 49179
Description: The base of a terminal category is a singleton. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypotheses
Ref Expression
termcbas.c (𝜑𝐶 ∈ TermCat)
termcbas.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
termcbas (𝜑 → ∃𝑥 𝐵 = {𝑥})
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem termcbas
StepHypRef Expression
1 termcbas.c . . 3 (𝜑𝐶 ∈ TermCat)
2 termcbas.b . . . 4 𝐵 = (Base‘𝐶)
32istermc 49173 . . 3 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
41, 3sylib 218 . 2 (𝜑 → (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
54simprd 495 1 (𝜑 → ∃𝑥 𝐵 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  {csn 4606  cfv 6541  Basecbs 17230  ThinCatcthinc 49118  TermCatctermc 49171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-termc 49172
This theorem is referenced by:  termcbas2  49180  termcbasmo  49181  oppctermhom  49202  functermc  49206  termcarweu  49226  diag1f1o  49232  diag2f1o  49235  basrestermcfo  49267
  Copyright terms: Public domain W3C validator