MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgtps Structured version   Visualization version   GIF version

Theorem trgtps 24063
Description: A topological ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
trgtps (𝑅 ∈ TopRing → 𝑅 ∈ TopSp)

Proof of Theorem trgtps
StepHypRef Expression
1 trgtgp 24061 . 2 (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)
2 tgptps 23973 . 2 (𝑅 ∈ TopGrp → 𝑅 ∈ TopSp)
31, 2syl 17 1 (𝑅 ∈ TopRing → 𝑅 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  TopSpctps 22825  TopGrpctgp 23964  TopRingctrg 24049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392  df-tmd 23965  df-tgp 23966  df-trg 24053
This theorem is referenced by:  tdrgtps  24070  tlmscatps  24084
  Copyright terms: Public domain W3C validator