![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trgtps | Structured version Visualization version GIF version |
Description: A topological ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
trgtps | ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trgtgp 23601 | . 2 ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp) | |
2 | tgptps 23513 | . 2 ⊢ (𝑅 ∈ TopGrp → 𝑅 ∈ TopSp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ TopRing → 𝑅 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 TopSpctps 22363 TopGrpctgp 23504 TopRingctrg 23589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2702 ax-nul 5299 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-rab 3432 df-v 3475 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-iota 6484 df-fv 6540 df-ov 7396 df-tmd 23505 df-tgp 23506 df-trg 23593 |
This theorem is referenced by: tdrgtps 23610 tlmscatps 23624 |
Copyright terms: Public domain | W3C validator |