MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgtps Structured version   Visualization version   GIF version

Theorem trgtps 24194
Description: A topological ring is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
trgtps (𝑅 ∈ TopRing → 𝑅 ∈ TopSp)

Proof of Theorem trgtps
StepHypRef Expression
1 trgtgp 24192 . 2 (𝑅 ∈ TopRing → 𝑅 ∈ TopGrp)
2 tgptps 24104 . 2 (𝑅 ∈ TopGrp → 𝑅 ∈ TopSp)
31, 2syl 17 1 (𝑅 ∈ TopRing → 𝑅 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  TopSpctps 22954  TopGrpctgp 24095  TopRingctrg 24180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-tmd 24096  df-tgp 24097  df-trg 24184
This theorem is referenced by:  tdrgtps  24201  tlmscatps  24215
  Copyright terms: Public domain W3C validator