MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcmin Structured version   Visualization version   GIF version

Theorem tcmin 9171
Description: Defining property of the transitive closure function: it is a subset of any transitive class containing 𝐴. (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
tcmin (𝐴𝑉 → ((𝐴𝐵 ∧ Tr 𝐵) → (TC‘𝐴) ⊆ 𝐵))

Proof of Theorem tcmin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tcvalg 9168 . . . . 5 (𝐴𝑉 → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
2 fvex 6676 . . . . 5 (TC‘𝐴) ∈ V
31, 2syl6eqelr 2919 . . . 4 (𝐴𝑉 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V)
4 intexab 5233 . . . 4 (∃𝑥(𝐴𝑥 ∧ Tr 𝑥) ↔ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V)
53, 4sylibr 235 . . 3 (𝐴𝑉 → ∃𝑥(𝐴𝑥 ∧ Tr 𝑥))
6 ssin 4204 . . . . . . . . 9 ((𝐴𝑥𝐴𝐵) ↔ 𝐴 ⊆ (𝑥𝐵))
76biimpi 217 . . . . . . . 8 ((𝐴𝑥𝐴𝐵) → 𝐴 ⊆ (𝑥𝐵))
8 trin 5173 . . . . . . . 8 ((Tr 𝑥 ∧ Tr 𝐵) → Tr (𝑥𝐵))
97, 8anim12i 612 . . . . . . 7 (((𝐴𝑥𝐴𝐵) ∧ (Tr 𝑥 ∧ Tr 𝐵)) → (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)))
109an4s 656 . . . . . 6 (((𝐴𝑥 ∧ Tr 𝑥) ∧ (𝐴𝐵 ∧ Tr 𝐵)) → (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)))
1110expcom 414 . . . . 5 ((𝐴𝐵 ∧ Tr 𝐵) → ((𝐴𝑥 ∧ Tr 𝑥) → (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵))))
12 vex 3495 . . . . . . . . 9 𝑥 ∈ V
1312inex1 5212 . . . . . . . 8 (𝑥𝐵) ∈ V
14 sseq2 3990 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (𝐴𝑦𝐴 ⊆ (𝑥𝐵)))
15 treq 5169 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (Tr 𝑦 ↔ Tr (𝑥𝐵)))
1614, 15anbi12d 630 . . . . . . . 8 (𝑦 = (𝑥𝐵) → ((𝐴𝑦 ∧ Tr 𝑦) ↔ (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵))))
1713, 16elab 3664 . . . . . . 7 ((𝑥𝐵) ∈ {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ↔ (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)))
18 intss1 4882 . . . . . . 7 ((𝑥𝐵) ∈ {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ (𝑥𝐵))
1917, 18sylbir 236 . . . . . 6 ((𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ (𝑥𝐵))
20 inss2 4203 . . . . . 6 (𝑥𝐵) ⊆ 𝐵
2119, 20sstrdi 3976 . . . . 5 ((𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵)
2211, 21syl6 35 . . . 4 ((𝐴𝐵 ∧ Tr 𝐵) → ((𝐴𝑥 ∧ Tr 𝑥) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
2322exlimdv 1925 . . 3 ((𝐴𝐵 ∧ Tr 𝐵) → (∃𝑥(𝐴𝑥 ∧ Tr 𝑥) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
245, 23syl5com 31 . 2 (𝐴𝑉 → ((𝐴𝐵 ∧ Tr 𝐵) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
25 tcvalg 9168 . . 3 (𝐴𝑉 → (TC‘𝐴) = {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)})
2625sseq1d 3995 . 2 (𝐴𝑉 → ((TC‘𝐴) ⊆ 𝐵 {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
2724, 26sylibrd 260 1 (𝐴𝑉 → ((𝐴𝐵 ∧ Tr 𝐵) → (TC‘𝐴) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wex 1771  wcel 2105  {cab 2796  Vcvv 3492  cin 3932  wss 3933   cint 4867  Tr wtr 5163  cfv 6348  TCctc 9166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-tc 9167
This theorem is referenced by:  tcidm  9176  tc0  9177  tcwf  9300  itunitc  9831  grur1  10230
  Copyright terms: Public domain W3C validator