MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcmin Structured version   Visualization version   GIF version

Theorem tcmin 9810
Description: Defining property of the transitive closure function: it is a subset of any transitive class containing 𝐴. (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
tcmin (𝐴𝑉 → ((𝐴𝐵 ∧ Tr 𝐵) → (TC‘𝐴) ⊆ 𝐵))

Proof of Theorem tcmin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tcvalg 9807 . . . . 5 (𝐴𝑉 → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
2 fvex 6933 . . . . 5 (TC‘𝐴) ∈ V
31, 2eqeltrrdi 2853 . . . 4 (𝐴𝑉 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V)
4 intexab 5364 . . . 4 (∃𝑥(𝐴𝑥 ∧ Tr 𝑥) ↔ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V)
53, 4sylibr 234 . . 3 (𝐴𝑉 → ∃𝑥(𝐴𝑥 ∧ Tr 𝑥))
6 ssin 4260 . . . . . . . . 9 ((𝐴𝑥𝐴𝐵) ↔ 𝐴 ⊆ (𝑥𝐵))
76biimpi 216 . . . . . . . 8 ((𝐴𝑥𝐴𝐵) → 𝐴 ⊆ (𝑥𝐵))
8 trin 5295 . . . . . . . 8 ((Tr 𝑥 ∧ Tr 𝐵) → Tr (𝑥𝐵))
97, 8anim12i 612 . . . . . . 7 (((𝐴𝑥𝐴𝐵) ∧ (Tr 𝑥 ∧ Tr 𝐵)) → (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)))
109an4s 659 . . . . . 6 (((𝐴𝑥 ∧ Tr 𝑥) ∧ (𝐴𝐵 ∧ Tr 𝐵)) → (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)))
1110expcom 413 . . . . 5 ((𝐴𝐵 ∧ Tr 𝐵) → ((𝐴𝑥 ∧ Tr 𝑥) → (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵))))
12 vex 3492 . . . . . . . . 9 𝑥 ∈ V
1312inex1 5335 . . . . . . . 8 (𝑥𝐵) ∈ V
14 sseq2 4035 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (𝐴𝑦𝐴 ⊆ (𝑥𝐵)))
15 treq 5291 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (Tr 𝑦 ↔ Tr (𝑥𝐵)))
1614, 15anbi12d 631 . . . . . . . 8 (𝑦 = (𝑥𝐵) → ((𝐴𝑦 ∧ Tr 𝑦) ↔ (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵))))
1713, 16elab 3694 . . . . . . 7 ((𝑥𝐵) ∈ {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ↔ (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)))
18 intss1 4987 . . . . . . 7 ((𝑥𝐵) ∈ {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ (𝑥𝐵))
1917, 18sylbir 235 . . . . . 6 ((𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ (𝑥𝐵))
20 inss2 4259 . . . . . 6 (𝑥𝐵) ⊆ 𝐵
2119, 20sstrdi 4021 . . . . 5 ((𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵)
2211, 21syl6 35 . . . 4 ((𝐴𝐵 ∧ Tr 𝐵) → ((𝐴𝑥 ∧ Tr 𝑥) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
2322exlimdv 1932 . . 3 ((𝐴𝐵 ∧ Tr 𝐵) → (∃𝑥(𝐴𝑥 ∧ Tr 𝑥) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
245, 23syl5com 31 . 2 (𝐴𝑉 → ((𝐴𝐵 ∧ Tr 𝐵) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
25 tcvalg 9807 . . 3 (𝐴𝑉 → (TC‘𝐴) = {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)})
2625sseq1d 4040 . 2 (𝐴𝑉 → ((TC‘𝐴) ⊆ 𝐵 {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
2724, 26sylibrd 259 1 (𝐴𝑉 → ((𝐴𝐵 ∧ Tr 𝐵) → (TC‘𝐴) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  Vcvv 3488  cin 3975  wss 3976   cint 4970  Tr wtr 5283  cfv 6573  TCctc 9805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-tc 9806
This theorem is referenced by:  tcidm  9815  tc0  9816  tcwf  9952  itunitc  10490  grur1  10889
  Copyright terms: Public domain W3C validator