MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcmin Structured version   Visualization version   GIF version

Theorem tcmin 9760
Description: Defining property of the transitive closure function: it is a subset of any transitive class containing 𝐴. (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
tcmin (𝐴𝑉 → ((𝐴𝐵 ∧ Tr 𝐵) → (TC‘𝐴) ⊆ 𝐵))

Proof of Theorem tcmin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tcvalg 9757 . . . . 5 (𝐴𝑉 → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
2 fvex 6894 . . . . 5 (TC‘𝐴) ∈ V
31, 2eqeltrrdi 2844 . . . 4 (𝐴𝑉 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V)
4 intexab 5321 . . . 4 (∃𝑥(𝐴𝑥 ∧ Tr 𝑥) ↔ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ∈ V)
53, 4sylibr 234 . . 3 (𝐴𝑉 → ∃𝑥(𝐴𝑥 ∧ Tr 𝑥))
6 ssin 4219 . . . . . . . . 9 ((𝐴𝑥𝐴𝐵) ↔ 𝐴 ⊆ (𝑥𝐵))
76biimpi 216 . . . . . . . 8 ((𝐴𝑥𝐴𝐵) → 𝐴 ⊆ (𝑥𝐵))
8 trin 5246 . . . . . . . 8 ((Tr 𝑥 ∧ Tr 𝐵) → Tr (𝑥𝐵))
97, 8anim12i 613 . . . . . . 7 (((𝐴𝑥𝐴𝐵) ∧ (Tr 𝑥 ∧ Tr 𝐵)) → (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)))
109an4s 660 . . . . . 6 (((𝐴𝑥 ∧ Tr 𝑥) ∧ (𝐴𝐵 ∧ Tr 𝐵)) → (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)))
1110expcom 413 . . . . 5 ((𝐴𝐵 ∧ Tr 𝐵) → ((𝐴𝑥 ∧ Tr 𝑥) → (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵))))
12 vex 3468 . . . . . . . . 9 𝑥 ∈ V
1312inex1 5292 . . . . . . . 8 (𝑥𝐵) ∈ V
14 sseq2 3990 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (𝐴𝑦𝐴 ⊆ (𝑥𝐵)))
15 treq 5242 . . . . . . . . 9 (𝑦 = (𝑥𝐵) → (Tr 𝑦 ↔ Tr (𝑥𝐵)))
1614, 15anbi12d 632 . . . . . . . 8 (𝑦 = (𝑥𝐵) → ((𝐴𝑦 ∧ Tr 𝑦) ↔ (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵))))
1713, 16elab 3663 . . . . . . 7 ((𝑥𝐵) ∈ {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ↔ (𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)))
18 intss1 4944 . . . . . . 7 ((𝑥𝐵) ∈ {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ (𝑥𝐵))
1917, 18sylbir 235 . . . . . 6 ((𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ (𝑥𝐵))
20 inss2 4218 . . . . . 6 (𝑥𝐵) ⊆ 𝐵
2119, 20sstrdi 3976 . . . . 5 ((𝐴 ⊆ (𝑥𝐵) ∧ Tr (𝑥𝐵)) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵)
2211, 21syl6 35 . . . 4 ((𝐴𝐵 ∧ Tr 𝐵) → ((𝐴𝑥 ∧ Tr 𝑥) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
2322exlimdv 1933 . . 3 ((𝐴𝐵 ∧ Tr 𝐵) → (∃𝑥(𝐴𝑥 ∧ Tr 𝑥) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
245, 23syl5com 31 . 2 (𝐴𝑉 → ((𝐴𝐵 ∧ Tr 𝐵) → {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
25 tcvalg 9757 . . 3 (𝐴𝑉 → (TC‘𝐴) = {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)})
2625sseq1d 3995 . 2 (𝐴𝑉 → ((TC‘𝐴) ⊆ 𝐵 {𝑦 ∣ (𝐴𝑦 ∧ Tr 𝑦)} ⊆ 𝐵))
2724, 26sylibrd 259 1 (𝐴𝑉 → ((𝐴𝐵 ∧ Tr 𝐵) → (TC‘𝐴) ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2714  Vcvv 3464  cin 3930  wss 3931   cint 4927  Tr wtr 5234  cfv 6536  TCctc 9755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-tc 9756
This theorem is referenced by:  tcidm  9765  tc0  9766  tcwf  9902  itunitc  10440  grur1  10839
  Copyright terms: Public domain W3C validator