| Step | Hyp | Ref
| Expression |
| 1 | | ineq1 4213 |
. . . . 5
⊢ (𝑢 = 𝑈 → (𝑢 ∩ 𝐴) = (𝑈 ∩ 𝐴)) |
| 2 | 1 | eleq1d 2826 |
. . . 4
⊢ (𝑢 = 𝑈 → ((𝑢 ∩ 𝐴) ∈ Univ ↔ (𝑈 ∩ 𝐴) ∈ Univ)) |
| 3 | 2 | imbi2d 340 |
. . 3
⊢ (𝑢 = 𝑈 → (((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴))) → (𝑢 ∩ 𝐴) ∈ Univ) ↔ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴))) → (𝑈 ∩ 𝐴) ∈ Univ))) |
| 4 | | elgrug 10832 |
. . . . . 6
⊢ (𝑢 ∈ Univ → (𝑢 ∈ Univ ↔ (Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢)))) |
| 5 | 4 | ibi 267 |
. . . . 5
⊢ (𝑢 ∈ Univ → (Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢))) |
| 6 | | trin 5271 |
. . . . . . 7
⊢ ((Tr
𝑢 ∧ Tr 𝐴) → Tr (𝑢 ∩ 𝐴)) |
| 7 | 6 | ex 412 |
. . . . . 6
⊢ (Tr 𝑢 → (Tr 𝐴 → Tr (𝑢 ∩ 𝐴))) |
| 8 | | inss1 4237 |
. . . . . . . 8
⊢ (𝑢 ∩ 𝐴) ⊆ 𝑢 |
| 9 | | ssralv 4052 |
. . . . . . . 8
⊢ ((𝑢 ∩ 𝐴) ⊆ 𝑢 → (∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢) → ∀𝑥 ∈ (𝑢 ∩ 𝐴)(𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢))) |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢) → ∀𝑥 ∈ (𝑢 ∩ 𝐴)(𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢)) |
| 11 | | inss2 4238 |
. . . . . . . 8
⊢ (𝑢 ∩ 𝐴) ⊆ 𝐴 |
| 12 | | ssralv 4052 |
. . . . . . . 8
⊢ ((𝑢 ∩ 𝐴) ⊆ 𝐴 → (∀𝑥 ∈ 𝐴 (𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴)) → ∀𝑥 ∈ (𝑢 ∩ 𝐴)(𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴)))) |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴)) → ∀𝑥 ∈ (𝑢 ∩ 𝐴)(𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴))) |
| 14 | | elin 3967 |
. . . . . . . . . . . . 13
⊢
(𝒫 𝑥 ∈
(𝑢 ∩ 𝐴) ↔ (𝒫 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝐴)) |
| 15 | 14 | simplbi2 500 |
. . . . . . . . . . . 12
⊢
(𝒫 𝑥 ∈
𝑢 → (𝒫 𝑥 ∈ 𝐴 → 𝒫 𝑥 ∈ (𝑢 ∩ 𝐴))) |
| 16 | | ssralv 4052 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∩ 𝐴) ⊆ 𝑢 → (∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 → ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ 𝑢)) |
| 17 | 8, 16 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
𝑢 {𝑥, 𝑦} ∈ 𝑢 → ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ 𝑢) |
| 18 | | ssralv 4052 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∩ 𝐴) ⊆ 𝐴 → (∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 → ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ 𝐴)) |
| 19 | 11, 18 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
𝐴 {𝑥, 𝑦} ∈ 𝐴 → ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ 𝐴) |
| 20 | | elin 3967 |
. . . . . . . . . . . . . . 15
⊢ ({𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴) ↔ ({𝑥, 𝑦} ∈ 𝑢 ∧ {𝑥, 𝑦} ∈ 𝐴)) |
| 21 | 20 | simplbi2 500 |
. . . . . . . . . . . . . 14
⊢ ({𝑥, 𝑦} ∈ 𝑢 → ({𝑥, 𝑦} ∈ 𝐴 → {𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴))) |
| 22 | 21 | ral2imi 3085 |
. . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
(𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ 𝑢 → (∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ 𝐴 → ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴))) |
| 23 | 17, 19, 22 | syl2im 40 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
𝑢 {𝑥, 𝑦} ∈ 𝑢 → (∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 → ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴))) |
| 24 | 15, 23 | im2anan9 620 |
. . . . . . . . . . 11
⊢
((𝒫 𝑥 ∈
𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢) → ((𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴) → (𝒫 𝑥 ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴)))) |
| 25 | | vex 3484 |
. . . . . . . . . . . . . 14
⊢ 𝑢 ∈ V |
| 26 | | mapss 8929 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ V ∧ (𝑢 ∩ 𝐴) ⊆ 𝑢) → ((𝑢 ∩ 𝐴) ↑m 𝑥) ⊆ (𝑢 ↑m 𝑥)) |
| 27 | 25, 8, 26 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∩ 𝐴) ↑m 𝑥) ⊆ (𝑢 ↑m 𝑥) |
| 28 | | ssralv 4052 |
. . . . . . . . . . . . 13
⊢ (((𝑢 ∩ 𝐴) ↑m 𝑥) ⊆ (𝑢 ↑m 𝑥) → (∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢 → ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢)) |
| 29 | 27, 28 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
(𝑢 ↑m 𝑥)∪
ran 𝑦 ∈ 𝑢 → ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢) |
| 30 | 25 | inex1 5317 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∩ 𝐴) ∈ V |
| 31 | | vex 3484 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑥 ∈ V |
| 32 | 30, 31 | elmap 8911 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥) ↔ 𝑦:𝑥⟶(𝑢 ∩ 𝐴)) |
| 33 | | fss 6752 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦:𝑥⟶(𝑢 ∩ 𝐴) ∧ (𝑢 ∩ 𝐴) ⊆ 𝐴) → 𝑦:𝑥⟶𝐴) |
| 34 | 11, 33 | mpan2 691 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦:𝑥⟶(𝑢 ∩ 𝐴) → 𝑦:𝑥⟶𝐴) |
| 35 | 32, 34 | sylbi 217 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥) → 𝑦:𝑥⟶𝐴) |
| 36 | 35 | imim1i 63 |
. . . . . . . . . . . . . 14
⊢ ((𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴) → (𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥) → ∪ ran
𝑦 ∈ 𝐴)) |
| 37 | 36 | alimi 1811 |
. . . . . . . . . . . . 13
⊢
(∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴) → ∀𝑦(𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥) → ∪ ran
𝑦 ∈ 𝐴)) |
| 38 | | df-ral 3062 |
. . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ 𝐴 ↔ ∀𝑦(𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥) → ∪ ran
𝑦 ∈ 𝐴)) |
| 39 | 37, 38 | sylibr 234 |
. . . . . . . . . . . 12
⊢
(∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴) → ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ 𝐴) |
| 40 | | elin 3967 |
. . . . . . . . . . . . . 14
⊢ (∪ ran 𝑦 ∈ (𝑢 ∩ 𝐴) ↔ (∪ ran
𝑦 ∈ 𝑢 ∧ ∪ ran 𝑦 ∈ 𝐴)) |
| 41 | 40 | simplbi2 500 |
. . . . . . . . . . . . 13
⊢ (∪ ran 𝑦 ∈ 𝑢 → (∪ ran
𝑦 ∈ 𝐴 → ∪ ran
𝑦 ∈ (𝑢 ∩ 𝐴))) |
| 42 | 41 | ral2imi 3085 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢 → (∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ 𝐴 → ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ (𝑢 ∩ 𝐴))) |
| 43 | 29, 39, 42 | syl2im 40 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
(𝑢 ↑m 𝑥)∪
ran 𝑦 ∈ 𝑢 → (∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴) → ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ (𝑢 ∩ 𝐴))) |
| 44 | 24, 43 | im2anan9 620 |
. . . . . . . . . 10
⊢
(((𝒫 𝑥
∈ 𝑢 ∧
∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢) ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢) → (((𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴) ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴)) → ((𝒫 𝑥 ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴)) ∧ ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ (𝑢 ∩ 𝐴)))) |
| 45 | 44 | 3impa 1110 |
. . . . . . . . 9
⊢
((𝒫 𝑥 ∈
𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢) → (((𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴) ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴)) → ((𝒫 𝑥 ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴)) ∧ ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ (𝑢 ∩ 𝐴)))) |
| 46 | | df-3an 1089 |
. . . . . . . . 9
⊢
((𝒫 𝑥 ∈
𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴)) ↔ ((𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴) ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴))) |
| 47 | | df-3an 1089 |
. . . . . . . . 9
⊢
((𝒫 𝑥 ∈
(𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ (𝑢 ∩ 𝐴)) ↔ ((𝒫 𝑥 ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴)) ∧ ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ (𝑢 ∩ 𝐴))) |
| 48 | 45, 46, 47 | 3imtr4g 296 |
. . . . . . . 8
⊢
((𝒫 𝑥 ∈
𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢) → ((𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴)) → (𝒫 𝑥 ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ (𝑢 ∩ 𝐴)))) |
| 49 | 48 | ral2imi 3085 |
. . . . . . 7
⊢
(∀𝑥 ∈
(𝑢 ∩ 𝐴)(𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢) → (∀𝑥 ∈ (𝑢 ∩ 𝐴)(𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴)) → ∀𝑥 ∈ (𝑢 ∩ 𝐴)(𝒫 𝑥 ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ (𝑢 ∩ 𝐴)))) |
| 50 | 10, 13, 49 | syl2im 40 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢) → (∀𝑥 ∈ 𝐴 (𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴)) → ∀𝑥 ∈ (𝑢 ∩ 𝐴)(𝒫 𝑥 ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ (𝑢 ∩ 𝐴)))) |
| 51 | 7, 50 | im2anan9 620 |
. . . . 5
⊢ ((Tr
𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢)) → ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴))) → (Tr (𝑢 ∩ 𝐴) ∧ ∀𝑥 ∈ (𝑢 ∩ 𝐴)(𝒫 𝑥 ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ (𝑢 ∩ 𝐴))))) |
| 52 | 5, 51 | syl 17 |
. . . 4
⊢ (𝑢 ∈ Univ → ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴))) → (Tr (𝑢 ∩ 𝐴) ∧ ∀𝑥 ∈ (𝑢 ∩ 𝐴)(𝒫 𝑥 ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ (𝑢 ∩ 𝐴))))) |
| 53 | | elgrug 10832 |
. . . . 5
⊢ ((𝑢 ∩ 𝐴) ∈ V → ((𝑢 ∩ 𝐴) ∈ Univ ↔ (Tr (𝑢 ∩ 𝐴) ∧ ∀𝑥 ∈ (𝑢 ∩ 𝐴)(𝒫 𝑥 ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ (𝑢 ∩ 𝐴))))) |
| 54 | 30, 53 | ax-mp 5 |
. . . 4
⊢ ((𝑢 ∩ 𝐴) ∈ Univ ↔ (Tr (𝑢 ∩ 𝐴) ∧ ∀𝑥 ∈ (𝑢 ∩ 𝐴)(𝒫 𝑥 ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ (𝑢 ∩ 𝐴){𝑥, 𝑦} ∈ (𝑢 ∩ 𝐴) ∧ ∀𝑦 ∈ ((𝑢 ∩ 𝐴) ↑m 𝑥)∪ ran 𝑦 ∈ (𝑢 ∩ 𝐴)))) |
| 55 | 52, 54 | imbitrrdi 252 |
. . 3
⊢ (𝑢 ∈ Univ → ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴))) → (𝑢 ∩ 𝐴) ∈ Univ)) |
| 56 | 3, 55 | vtoclga 3577 |
. 2
⊢ (𝑈 ∈ Univ → ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴))) → (𝑈 ∩ 𝐴) ∈ Univ)) |
| 57 | 56 | com12 32 |
1
⊢ ((Tr
𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝒫 𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥⟶𝐴 → ∪ ran
𝑦 ∈ 𝐴))) → (𝑈 ∈ Univ → (𝑈 ∩ 𝐴) ∈ Univ)) |