MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ingru Structured version   Visualization version   GIF version

Theorem ingru 10571
Description: The intersection of a universe with a class that acts like a universe is another universe. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
ingru ((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (𝑈 ∈ Univ → (𝑈𝐴) ∈ Univ))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem ingru
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ineq1 4139 . . . . 5 (𝑢 = 𝑈 → (𝑢𝐴) = (𝑈𝐴))
21eleq1d 2823 . . . 4 (𝑢 = 𝑈 → ((𝑢𝐴) ∈ Univ ↔ (𝑈𝐴) ∈ Univ))
32imbi2d 341 . . 3 (𝑢 = 𝑈 → (((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (𝑢𝐴) ∈ Univ) ↔ ((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (𝑈𝐴) ∈ Univ)))
4 elgrug 10548 . . . . . 6 (𝑢 ∈ Univ → (𝑢 ∈ Univ ↔ (Tr 𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢))))
54ibi 266 . . . . 5 (𝑢 ∈ Univ → (Tr 𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢)))
6 trin 5201 . . . . . . 7 ((Tr 𝑢 ∧ Tr 𝐴) → Tr (𝑢𝐴))
76ex 413 . . . . . 6 (Tr 𝑢 → (Tr 𝐴 → Tr (𝑢𝐴)))
8 inss1 4162 . . . . . . . 8 (𝑢𝐴) ⊆ 𝑢
9 ssralv 3987 . . . . . . . 8 ((𝑢𝐴) ⊆ 𝑢 → (∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢) → ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢)))
108, 9ax-mp 5 . . . . . . 7 (∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢) → ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢))
11 inss2 4163 . . . . . . . 8 (𝑢𝐴) ⊆ 𝐴
12 ssralv 3987 . . . . . . . 8 ((𝑢𝐴) ⊆ 𝐴 → (∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) → ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))))
1311, 12ax-mp 5 . . . . . . 7 (∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) → ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)))
14 elin 3903 . . . . . . . . . . . . 13 (𝒫 𝑥 ∈ (𝑢𝐴) ↔ (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝐴))
1514simplbi2 501 . . . . . . . . . . . 12 (𝒫 𝑥𝑢 → (𝒫 𝑥𝐴 → 𝒫 𝑥 ∈ (𝑢𝐴)))
16 ssralv 3987 . . . . . . . . . . . . . 14 ((𝑢𝐴) ⊆ 𝑢 → (∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 → ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ 𝑢))
178, 16ax-mp 5 . . . . . . . . . . . . 13 (∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 → ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ 𝑢)
18 ssralv 3987 . . . . . . . . . . . . . 14 ((𝑢𝐴) ⊆ 𝐴 → (∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 → ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ 𝐴))
1911, 18ax-mp 5 . . . . . . . . . . . . 13 (∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 → ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ 𝐴)
20 elin 3903 . . . . . . . . . . . . . . 15 ({𝑥, 𝑦} ∈ (𝑢𝐴) ↔ ({𝑥, 𝑦} ∈ 𝑢 ∧ {𝑥, 𝑦} ∈ 𝐴))
2120simplbi2 501 . . . . . . . . . . . . . 14 ({𝑥, 𝑦} ∈ 𝑢 → ({𝑥, 𝑦} ∈ 𝐴 → {𝑥, 𝑦} ∈ (𝑢𝐴)))
2221ral2imi 3082 . . . . . . . . . . . . 13 (∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ 𝑢 → (∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ 𝐴 → ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴)))
2317, 19, 22syl2im 40 . . . . . . . . . . . 12 (∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 → (∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 → ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴)))
2415, 23im2anan9 620 . . . . . . . . . . 11 ((𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢) → ((𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴) → (𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴))))
25 vex 3436 . . . . . . . . . . . . . 14 𝑢 ∈ V
26 mapss 8677 . . . . . . . . . . . . . 14 ((𝑢 ∈ V ∧ (𝑢𝐴) ⊆ 𝑢) → ((𝑢𝐴) ↑m 𝑥) ⊆ (𝑢m 𝑥))
2725, 8, 26mp2an 689 . . . . . . . . . . . . 13 ((𝑢𝐴) ↑m 𝑥) ⊆ (𝑢m 𝑥)
28 ssralv 3987 . . . . . . . . . . . . 13 (((𝑢𝐴) ↑m 𝑥) ⊆ (𝑢m 𝑥) → (∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢 → ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦𝑢))
2927, 28ax-mp 5 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢 → ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦𝑢)
3025inex1 5241 . . . . . . . . . . . . . . . . 17 (𝑢𝐴) ∈ V
31 vex 3436 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
3230, 31elmap 8659 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ↔ 𝑦:𝑥⟶(𝑢𝐴))
33 fss 6617 . . . . . . . . . . . . . . . . 17 ((𝑦:𝑥⟶(𝑢𝐴) ∧ (𝑢𝐴) ⊆ 𝐴) → 𝑦:𝑥𝐴)
3411, 33mpan2 688 . . . . . . . . . . . . . . . 16 (𝑦:𝑥⟶(𝑢𝐴) → 𝑦:𝑥𝐴)
3532, 34sylbi 216 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) → 𝑦:𝑥𝐴)
3635imim1i 63 . . . . . . . . . . . . . 14 ((𝑦:𝑥𝐴 ran 𝑦𝐴) → (𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) → ran 𝑦𝐴))
3736alimi 1814 . . . . . . . . . . . . 13 (∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴) → ∀𝑦(𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) → ran 𝑦𝐴))
38 df-ral 3069 . . . . . . . . . . . . 13 (∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦𝐴 ↔ ∀𝑦(𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) → ran 𝑦𝐴))
3937, 38sylibr 233 . . . . . . . . . . . 12 (∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴) → ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦𝐴)
40 elin 3903 . . . . . . . . . . . . . 14 ( ran 𝑦 ∈ (𝑢𝐴) ↔ ( ran 𝑦𝑢 ran 𝑦𝐴))
4140simplbi2 501 . . . . . . . . . . . . 13 ( ran 𝑦𝑢 → ( ran 𝑦𝐴 ran 𝑦 ∈ (𝑢𝐴)))
4241ral2imi 3082 . . . . . . . . . . . 12 (∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦𝑢 → (∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦𝐴 → ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦 ∈ (𝑢𝐴)))
4329, 39, 42syl2im 40 . . . . . . . . . . 11 (∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢 → (∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴) → ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦 ∈ (𝑢𝐴)))
4424, 43im2anan9 620 . . . . . . . . . 10 (((𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢) ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢) → (((𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴) ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) → ((𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴)) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦 ∈ (𝑢𝐴))))
45443impa 1109 . . . . . . . . 9 ((𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢) → (((𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴) ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) → ((𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴)) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦 ∈ (𝑢𝐴))))
46 df-3an 1088 . . . . . . . . 9 ((𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) ↔ ((𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴) ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)))
47 df-3an 1088 . . . . . . . . 9 ((𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦 ∈ (𝑢𝐴)) ↔ ((𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴)) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦 ∈ (𝑢𝐴)))
4845, 46, 473imtr4g 296 . . . . . . . 8 ((𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢) → ((𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) → (𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦 ∈ (𝑢𝐴))))
4948ral2imi 3082 . . . . . . 7 (∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢) → (∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) → ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦 ∈ (𝑢𝐴))))
5010, 13, 49syl2im 40 . . . . . 6 (∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢) → (∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) → ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦 ∈ (𝑢𝐴))))
517, 50im2anan9 620 . . . . 5 ((Tr 𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢)) → ((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (Tr (𝑢𝐴) ∧ ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦 ∈ (𝑢𝐴)))))
525, 51syl 17 . . . 4 (𝑢 ∈ Univ → ((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (Tr (𝑢𝐴) ∧ ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦 ∈ (𝑢𝐴)))))
53 elgrug 10548 . . . . 5 ((𝑢𝐴) ∈ V → ((𝑢𝐴) ∈ Univ ↔ (Tr (𝑢𝐴) ∧ ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦 ∈ (𝑢𝐴)))))
5430, 53ax-mp 5 . . . 4 ((𝑢𝐴) ∈ Univ ↔ (Tr (𝑢𝐴) ∧ ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑m 𝑥) ran 𝑦 ∈ (𝑢𝐴))))
5552, 54syl6ibr 251 . . 3 (𝑢 ∈ Univ → ((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (𝑢𝐴) ∈ Univ))
563, 55vtoclga 3513 . 2 (𝑈 ∈ Univ → ((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (𝑈𝐴) ∈ Univ))
5756com12 32 1 ((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (𝑈 ∈ Univ → (𝑈𝐴) ∈ Univ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wal 1537   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cin 3886  wss 3887  𝒫 cpw 4533  {cpr 4563   cuni 4839  Tr wtr 5191  ran crn 5590  wf 6429  (class class class)co 7275  m cmap 8615  Univcgru 10546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-gru 10547
This theorem is referenced by:  wfgru  10572
  Copyright terms: Public domain W3C validator