Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordin | Structured version Visualization version GIF version |
Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.) |
Ref | Expression |
---|---|
ordin | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 6265 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | ordtr 6265 | . . 3 ⊢ (Ord 𝐵 → Tr 𝐵) | |
3 | trin 5197 | . . 3 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) | |
4 | 1, 2, 3 | syl2an 595 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Tr (𝐴 ∩ 𝐵)) |
5 | inss2 4160 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
6 | trssord 6268 | . . 3 ⊢ ((Tr (𝐴 ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | |
7 | 5, 6 | mp3an2 1447 | . 2 ⊢ ((Tr (𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
8 | 4, 7 | sylancom 587 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3882 ⊆ wss 3883 Tr wtr 5187 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 |
This theorem is referenced by: onin 6282 ordtri3or 6283 ordelinel 6349 smores 8154 smores2 8156 ordtypelem5 9211 ordtypelem7 9213 |
Copyright terms: Public domain | W3C validator |