MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordin Structured version   Visualization version   GIF version

Theorem ordin 6382
Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
ordin ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))

Proof of Theorem ordin
StepHypRef Expression
1 ordtr 6366 . . 3 (Ord 𝐴 → Tr 𝐴)
2 ordtr 6366 . . 3 (Ord 𝐵 → Tr 𝐵)
3 trin 5241 . . 3 ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))
41, 2, 3syl2an 596 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → Tr (𝐴𝐵))
5 inss2 4213 . . 3 (𝐴𝐵) ⊆ 𝐵
6 trssord 6369 . . 3 ((Tr (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐵 ∧ Ord 𝐵) → Ord (𝐴𝐵))
75, 6mp3an2 1451 . 2 ((Tr (𝐴𝐵) ∧ Ord 𝐵) → Ord (𝐴𝐵))
84, 7sylancom 588 1 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cin 3925  wss 3926  Tr wtr 5229  Ord word 6351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-in 3933  df-ss 3943  df-uni 4884  df-tr 5230  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355
This theorem is referenced by:  onin  6383  ordtri3or  6384  ordelinel  6455  smores  8366  smores2  8368  ordtypelem5  9536  ordtypelem7  9538
  Copyright terms: Public domain W3C validator