MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordin Structured version   Visualization version   GIF version

Theorem ordin 6393
Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
ordin ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))

Proof of Theorem ordin
StepHypRef Expression
1 ordtr 6377 . . 3 (Ord 𝐴 → Tr 𝐴)
2 ordtr 6377 . . 3 (Ord 𝐵 → Tr 𝐵)
3 trin 5276 . . 3 ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))
41, 2, 3syl2an 594 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → Tr (𝐴𝐵))
5 inss2 4228 . . 3 (𝐴𝐵) ⊆ 𝐵
6 trssord 6380 . . 3 ((Tr (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐵 ∧ Ord 𝐵) → Ord (𝐴𝐵))
75, 6mp3an2 1447 . 2 ((Tr (𝐴𝐵) ∧ Ord 𝐵) → Ord (𝐴𝐵))
84, 7sylancom 586 1 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  cin 3946  wss 3947  Tr wtr 5264  Ord word 6362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1087  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rab 3431  df-v 3474  df-in 3954  df-ss 3964  df-uni 4908  df-tr 5265  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6366
This theorem is referenced by:  onin  6394  ordtri3or  6395  ordelinel  6464  smores  8354  smores2  8356  ordtypelem5  9519  ordtypelem7  9521
  Copyright terms: Public domain W3C validator