| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordin | Structured version Visualization version GIF version | ||
| Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.) |
| Ref | Expression |
|---|---|
| ordin | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 6398 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 2 | ordtr 6398 | . . 3 ⊢ (Ord 𝐵 → Tr 𝐵) | |
| 3 | trin 5271 | . . 3 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Tr (𝐴 ∩ 𝐵)) |
| 5 | inss2 4238 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 6 | trssord 6401 | . . 3 ⊢ ((Tr (𝐴 ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | |
| 7 | 5, 6 | mp3an2 1451 | . 2 ⊢ ((Tr (𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
| 8 | 4, 7 | sylancom 588 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∩ cin 3950 ⊆ wss 3951 Tr wtr 5259 Ord word 6383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3482 df-in 3958 df-ss 3968 df-uni 4908 df-tr 5260 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 |
| This theorem is referenced by: onin 6415 ordtri3or 6416 ordelinel 6485 smores 8392 smores2 8394 ordtypelem5 9562 ordtypelem7 9564 |
| Copyright terms: Public domain | W3C validator |