![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordin | Structured version Visualization version GIF version |
Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.) |
Ref | Expression |
---|---|
ordin | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 6377 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | ordtr 6377 | . . 3 ⊢ (Ord 𝐵 → Tr 𝐵) | |
3 | trin 5276 | . . 3 ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) | |
4 | 1, 2, 3 | syl2an 594 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Tr (𝐴 ∩ 𝐵)) |
5 | inss2 4228 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
6 | trssord 6380 | . . 3 ⊢ ((Tr (𝐴 ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | |
7 | 5, 6 | mp3an2 1447 | . 2 ⊢ ((Tr (𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
8 | 4, 7 | sylancom 586 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∩ cin 3946 ⊆ wss 3947 Tr wtr 5264 Ord word 6362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rab 3431 df-v 3474 df-in 3954 df-ss 3964 df-uni 4908 df-tr 5265 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6366 |
This theorem is referenced by: onin 6394 ordtri3or 6395 ordelinel 6464 smores 8354 smores2 8356 ordtypelem5 9519 ordtypelem7 9521 |
Copyright terms: Public domain | W3C validator |