MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordin Structured version   Visualization version   GIF version

Theorem ordin 6336
Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
ordin ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))

Proof of Theorem ordin
StepHypRef Expression
1 ordtr 6320 . . 3 (Ord 𝐴 → Tr 𝐴)
2 ordtr 6320 . . 3 (Ord 𝐵 → Tr 𝐵)
3 trin 5209 . . 3 ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))
41, 2, 3syl2an 596 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → Tr (𝐴𝐵))
5 inss2 4188 . . 3 (𝐴𝐵) ⊆ 𝐵
6 trssord 6323 . . 3 ((Tr (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐵 ∧ Ord 𝐵) → Ord (𝐴𝐵))
75, 6mp3an2 1451 . 2 ((Tr (𝐴𝐵) ∧ Ord 𝐵) → Ord (𝐴𝐵))
84, 7sylancom 588 1 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cin 3901  wss 3902  Tr wtr 5198  Ord word 6305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-in 3909  df-ss 3919  df-uni 4860  df-tr 5199  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-ord 6309
This theorem is referenced by:  onin  6337  ordtri3or  6338  ordelinel  6409  smores  8272  smores2  8274  ordtypelem5  9408  ordtypelem7  9410
  Copyright terms: Public domain W3C validator