MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordin Structured version   Visualization version   GIF version

Theorem ordin 6096
Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
ordin ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))

Proof of Theorem ordin
StepHypRef Expression
1 ordtr 6080 . . 3 (Ord 𝐴 → Tr 𝐴)
2 ordtr 6080 . . 3 (Ord 𝐵 → Tr 𝐵)
3 trin 5073 . . 3 ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴𝐵))
41, 2, 3syl2an 595 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → Tr (𝐴𝐵))
5 inss2 4126 . . 3 (𝐴𝐵) ⊆ 𝐵
6 trssord 6083 . . 3 ((Tr (𝐴𝐵) ∧ (𝐴𝐵) ⊆ 𝐵 ∧ Ord 𝐵) → Ord (𝐴𝐵))
75, 6mp3an2 1441 . 2 ((Tr (𝐴𝐵) ∧ Ord 𝐵) → Ord (𝐴𝐵))
84, 7sylancom 588 1 ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  cin 3858  wss 3859  Tr wtr 5063  Ord word 6065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-v 3439  df-in 3866  df-ss 3874  df-uni 4746  df-tr 5064  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-ord 6069
This theorem is referenced by:  onin  6097  ordtri3or  6098  ordelinel  6164  smores  7841  smores2  7843  ordtypelem5  8832  ordtypelem7  8834
  Copyright terms: Public domain W3C validator