MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsksuc Structured version   Visualization version   GIF version

Theorem tsksuc 10597
Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsksuc ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → suc 𝐴𝑇)

Proof of Theorem tsksuc
StepHypRef Expression
1 simp1 1135 . 2 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → 𝑇 ∈ Tarski)
2 tskpw 10588 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
323adant2 1130 . 2 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
4 eloni 6298 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
543ad2ant2 1133 . . . 4 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → Ord 𝐴)
6 ordunisuc 7723 . . . 4 (Ord 𝐴 suc 𝐴 = 𝐴)
7 eqimss 3986 . . . 4 ( suc 𝐴 = 𝐴 suc 𝐴𝐴)
85, 6, 73syl 18 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → suc 𝐴𝐴)
9 sspwuni 5041 . . 3 (suc 𝐴 ⊆ 𝒫 𝐴 suc 𝐴𝐴)
108, 9sylibr 233 . 2 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → suc 𝐴 ⊆ 𝒫 𝐴)
11 tskss 10593 . 2 ((𝑇 ∈ Tarski ∧ 𝒫 𝐴𝑇 ∧ suc 𝐴 ⊆ 𝒫 𝐴) → suc 𝐴𝑇)
121, 3, 10, 11syl3anc 1370 1 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → suc 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  wss 3896  𝒫 cpw 4544   cuni 4849  Ord word 6287  Oncon0 6288  suc csuc 6290  Tarskictsk 10583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-tr 5204  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-ord 6291  df-on 6292  df-suc 6294  df-tsk 10584
This theorem is referenced by:  tsk2  10600
  Copyright terms: Public domain W3C validator