MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsksuc Structured version   Visualization version   GIF version

Theorem tsksuc 10341
Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsksuc ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → suc 𝐴𝑇)

Proof of Theorem tsksuc
StepHypRef Expression
1 simp1 1138 . 2 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → 𝑇 ∈ Tarski)
2 tskpw 10332 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
323adant2 1133 . 2 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
4 eloni 6201 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
543ad2ant2 1136 . . . 4 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → Ord 𝐴)
6 ordunisuc 7589 . . . 4 (Ord 𝐴 suc 𝐴 = 𝐴)
7 eqimss 3943 . . . 4 ( suc 𝐴 = 𝐴 suc 𝐴𝐴)
85, 6, 73syl 18 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → suc 𝐴𝐴)
9 sspwuni 4994 . . 3 (suc 𝐴 ⊆ 𝒫 𝐴 suc 𝐴𝐴)
108, 9sylibr 237 . 2 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → suc 𝐴 ⊆ 𝒫 𝐴)
11 tskss 10337 . 2 ((𝑇 ∈ Tarski ∧ 𝒫 𝐴𝑇 ∧ suc 𝐴 ⊆ 𝒫 𝐴) → suc 𝐴𝑇)
121, 3, 10, 11syl3anc 1373 1 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → suc 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2112  wss 3853  𝒫 cpw 4499   cuni 4805  Ord word 6190  Oncon0 6191  suc csuc 6193  Tarskictsk 10327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-tr 5147  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-ord 6194  df-on 6195  df-suc 6197  df-tsk 10328
This theorem is referenced by:  tsk2  10344
  Copyright terms: Public domain W3C validator