![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsksuc | Structured version Visualization version GIF version |
Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tsksuc | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → suc 𝐴 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ Tarski) | |
2 | tskpw 10750 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) | |
3 | 2 | 3adant2 1129 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) |
4 | eloni 6373 | . . . . 5 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
5 | 4 | 3ad2ant2 1132 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → Ord 𝐴) |
6 | ordunisuc 7822 | . . . 4 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
7 | eqimss 4039 | . . . 4 ⊢ (∪ suc 𝐴 = 𝐴 → ∪ suc 𝐴 ⊆ 𝐴) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → ∪ suc 𝐴 ⊆ 𝐴) |
9 | sspwuni 5102 | . . 3 ⊢ (suc 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ suc 𝐴 ⊆ 𝐴) | |
10 | 8, 9 | sylibr 233 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → suc 𝐴 ⊆ 𝒫 𝐴) |
11 | tskss 10755 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝒫 𝐴 ∈ 𝑇 ∧ suc 𝐴 ⊆ 𝒫 𝐴) → suc 𝐴 ∈ 𝑇) | |
12 | 1, 3, 10, 11 | syl3anc 1369 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → suc 𝐴 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ⊆ wss 3947 𝒫 cpw 4601 ∪ cuni 4907 Ord word 6362 Oncon0 6363 suc csuc 6365 Tarskictsk 10745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6366 df-on 6367 df-suc 6369 df-tsk 10746 |
This theorem is referenced by: tsk2 10762 |
Copyright terms: Public domain | W3C validator |