Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsksuc | Structured version Visualization version GIF version |
Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tsksuc | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → suc 𝐴 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ Tarski) | |
2 | tskpw 10588 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) | |
3 | 2 | 3adant2 1130 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) |
4 | eloni 6298 | . . . . 5 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
5 | 4 | 3ad2ant2 1133 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → Ord 𝐴) |
6 | ordunisuc 7723 | . . . 4 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
7 | eqimss 3986 | . . . 4 ⊢ (∪ suc 𝐴 = 𝐴 → ∪ suc 𝐴 ⊆ 𝐴) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → ∪ suc 𝐴 ⊆ 𝐴) |
9 | sspwuni 5041 | . . 3 ⊢ (suc 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ suc 𝐴 ⊆ 𝐴) | |
10 | 8, 9 | sylibr 233 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → suc 𝐴 ⊆ 𝒫 𝐴) |
11 | tskss 10593 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝒫 𝐴 ∈ 𝑇 ∧ suc 𝐴 ⊆ 𝒫 𝐴) → suc 𝐴 ∈ 𝑇) | |
12 | 1, 3, 10, 11 | syl3anc 1370 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → suc 𝐴 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ⊆ wss 3896 𝒫 cpw 4544 ∪ cuni 4849 Ord word 6287 Oncon0 6288 suc csuc 6290 Tarskictsk 10583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-tr 5204 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-ord 6291 df-on 6292 df-suc 6294 df-tsk 10584 |
This theorem is referenced by: tsk2 10600 |
Copyright terms: Public domain | W3C validator |