MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsksuc Structured version   Visualization version   GIF version

Theorem tsksuc 10656
Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsksuc ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → suc 𝐴𝑇)

Proof of Theorem tsksuc
StepHypRef Expression
1 simp1 1136 . 2 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → 𝑇 ∈ Tarski)
2 tskpw 10647 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
323adant2 1131 . 2 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
4 eloni 6317 . . . . 5 (𝐴 ∈ On → Ord 𝐴)
543ad2ant2 1134 . . . 4 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → Ord 𝐴)
6 ordunisuc 7765 . . . 4 (Ord 𝐴 suc 𝐴 = 𝐴)
7 eqimss 3994 . . . 4 ( suc 𝐴 = 𝐴 suc 𝐴𝐴)
85, 6, 73syl 18 . . 3 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → suc 𝐴𝐴)
9 sspwuni 5049 . . 3 (suc 𝐴 ⊆ 𝒫 𝐴 suc 𝐴𝐴)
108, 9sylibr 234 . 2 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → suc 𝐴 ⊆ 𝒫 𝐴)
11 tskss 10652 . 2 ((𝑇 ∈ Tarski ∧ 𝒫 𝐴𝑇 ∧ suc 𝐴 ⊆ 𝒫 𝐴) → suc 𝐴𝑇)
121, 3, 10, 11syl3anc 1373 1 ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴𝑇) → suc 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wss 3903  𝒫 cpw 4551   cuni 4858  Ord word 6306  Oncon0 6307  suc csuc 6309  Tarskictsk 10642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-on 6311  df-suc 6313  df-tsk 10643
This theorem is referenced by:  tsk2  10659
  Copyright terms: Public domain W3C validator