| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsksuc | Structured version Visualization version GIF version | ||
| Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
| Ref | Expression |
|---|---|
| tsksuc | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → suc 𝐴 ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ Tarski) | |
| 2 | tskpw 10706 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) | |
| 3 | 2 | 3adant2 1131 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) |
| 4 | eloni 6342 | . . . . 5 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 5 | 4 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → Ord 𝐴) |
| 6 | ordunisuc 7807 | . . . 4 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
| 7 | eqimss 4005 | . . . 4 ⊢ (∪ suc 𝐴 = 𝐴 → ∪ suc 𝐴 ⊆ 𝐴) | |
| 8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → ∪ suc 𝐴 ⊆ 𝐴) |
| 9 | sspwuni 5064 | . . 3 ⊢ (suc 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ suc 𝐴 ⊆ 𝐴) | |
| 10 | 8, 9 | sylibr 234 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → suc 𝐴 ⊆ 𝒫 𝐴) |
| 11 | tskss 10711 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝒫 𝐴 ∈ 𝑇 ∧ suc 𝐴 ⊆ 𝒫 𝐴) → suc 𝐴 ∈ 𝑇) | |
| 12 | 1, 3, 10, 11 | syl3anc 1373 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → suc 𝐴 ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 Ord word 6331 Oncon0 6332 suc csuc 6334 Tarskictsk 10701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-suc 6338 df-tsk 10702 |
| This theorem is referenced by: tsk2 10718 |
| Copyright terms: Public domain | W3C validator |