![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsksuc | Structured version Visualization version GIF version |
Description: If an element of a Tarski class is an ordinal number, its successor is an element of the class. JFM CLASSES2 th. 6 (partly). (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tsksuc | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → suc 𝐴 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1137 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → 𝑇 ∈ Tarski) | |
2 | tskpw 10748 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) | |
3 | 2 | 3adant2 1132 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) |
4 | eloni 6375 | . . . . 5 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
5 | 4 | 3ad2ant2 1135 | . . . 4 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → Ord 𝐴) |
6 | ordunisuc 7820 | . . . 4 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
7 | eqimss 4041 | . . . 4 ⊢ (∪ suc 𝐴 = 𝐴 → ∪ suc 𝐴 ⊆ 𝐴) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → ∪ suc 𝐴 ⊆ 𝐴) |
9 | sspwuni 5104 | . . 3 ⊢ (suc 𝐴 ⊆ 𝒫 𝐴 ↔ ∪ suc 𝐴 ⊆ 𝐴) | |
10 | 8, 9 | sylibr 233 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → suc 𝐴 ⊆ 𝒫 𝐴) |
11 | tskss 10753 | . 2 ⊢ ((𝑇 ∈ Tarski ∧ 𝒫 𝐴 ∈ 𝑇 ∧ suc 𝐴 ⊆ 𝒫 𝐴) → suc 𝐴 ∈ 𝑇) | |
12 | 1, 3, 10, 11 | syl3anc 1372 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ On ∧ 𝐴 ∈ 𝑇) → suc 𝐴 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⊆ wss 3949 𝒫 cpw 4603 ∪ cuni 4909 Ord word 6364 Oncon0 6365 suc csuc 6367 Tarskictsk 10743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6368 df-on 6369 df-suc 6371 df-tsk 10744 |
This theorem is referenced by: tsk2 10760 |
Copyright terms: Public domain | W3C validator |