MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskpwss Structured version   Visualization version   GIF version

Theorem tskpwss 10226
Description: First axiom of a Tarski class. The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskpwss ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)

Proof of Theorem tskpwss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eltskg 10224 . . . . 5 (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∃𝑦𝑇 𝒫 𝑥𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇))))
21ibi 270 . . . 4 (𝑇 ∈ Tarski → (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∃𝑦𝑇 𝒫 𝑥𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥𝑇𝑥𝑇)))
32simpld 498 . . 3 (𝑇 ∈ Tarski → ∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∃𝑦𝑇 𝒫 𝑥𝑦))
4 simpl 486 . . . 4 ((𝒫 𝑥𝑇 ∧ ∃𝑦𝑇 𝒫 𝑥𝑦) → 𝒫 𝑥𝑇)
54ralimi 3093 . . 3 (∀𝑥𝑇 (𝒫 𝑥𝑇 ∧ ∃𝑦𝑇 𝒫 𝑥𝑦) → ∀𝑥𝑇 𝒫 𝑥𝑇)
63, 5syl 17 . 2 (𝑇 ∈ Tarski → ∀𝑥𝑇 𝒫 𝑥𝑇)
7 pweq 4514 . . . 4 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
87sseq1d 3926 . . 3 (𝑥 = 𝐴 → (𝒫 𝑥𝑇 ↔ 𝒫 𝐴𝑇))
98rspccva 3543 . 2 ((∀𝑥𝑇 𝒫 𝑥𝑇𝐴𝑇) → 𝒫 𝐴𝑇)
106, 9sylan 583 1 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝒫 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1539  wcel 2112  wral 3071  wrex 3072  wss 3861  𝒫 cpw 4498   class class class wbr 5037  cen 8538  Tarskictsk 10222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ral 3076  df-rex 3077  df-v 3412  df-un 3866  df-in 3868  df-ss 3878  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-br 5038  df-tsk 10223
This theorem is referenced by:  tsksdom  10230  tskss  10232  tsktrss  10235  inttsk  10248  tskcard  10255
  Copyright terms: Public domain W3C validator