![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskpwss | Structured version Visualization version GIF version |
Description: First axiom of a Tarski class. The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskpwss | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltskg 10781 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇)))) | |
2 | 1 | ibi 266 | . . . 4 ⊢ (𝑇 ∈ Tarski → (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇))) |
3 | 2 | simpld 493 | . . 3 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦)) |
4 | simpl 481 | . . . 4 ⊢ ((𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) → 𝒫 𝑥 ⊆ 𝑇) | |
5 | 4 | ralimi 3080 | . . 3 ⊢ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) → ∀𝑥 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑇) |
6 | 3, 5 | syl 17 | . 2 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑇) |
7 | pweq 4620 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
8 | 7 | sseq1d 4013 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ⊆ 𝑇 ↔ 𝒫 𝐴 ⊆ 𝑇)) |
9 | 8 | rspccva 3610 | . 2 ⊢ ((∀𝑥 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑇 ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) |
10 | 6, 9 | sylan 578 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ∃wrex 3067 ⊆ wss 3949 𝒫 cpw 4606 class class class wbr 5152 ≈ cen 8967 Tarskictsk 10779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-tsk 10780 |
This theorem is referenced by: tsksdom 10787 tskss 10789 tsktrss 10792 inttsk 10805 tskcard 10812 |
Copyright terms: Public domain | W3C validator |