![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskpwss | Structured version Visualization version GIF version |
Description: First axiom of a Tarski class. The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskpwss | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltskg 10819 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇)))) | |
2 | 1 | ibi 267 | . . . 4 ⊢ (𝑇 ∈ Tarski → (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇))) |
3 | 2 | simpld 494 | . . 3 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦)) |
4 | simpl 482 | . . . 4 ⊢ ((𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) → 𝒫 𝑥 ⊆ 𝑇) | |
5 | 4 | ralimi 3089 | . . 3 ⊢ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) → ∀𝑥 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑇) |
6 | 3, 5 | syl 17 | . 2 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑇) |
7 | pweq 4636 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
8 | 7 | sseq1d 4040 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ⊆ 𝑇 ↔ 𝒫 𝐴 ⊆ 𝑇)) |
9 | 8 | rspccva 3634 | . 2 ⊢ ((∀𝑥 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑇 ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) |
10 | 6, 9 | sylan 579 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 𝒫 cpw 4622 class class class wbr 5166 ≈ cen 9000 Tarskictsk 10817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-tsk 10818 |
This theorem is referenced by: tsksdom 10825 tskss 10827 tsktrss 10830 inttsk 10843 tskcard 10850 |
Copyright terms: Public domain | W3C validator |