Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tskpwss | Structured version Visualization version GIF version |
Description: First axiom of a Tarski class. The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskpwss | ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltskg 10224 | . . . . 5 ⊢ (𝑇 ∈ Tarski → (𝑇 ∈ Tarski ↔ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇)))) | |
2 | 1 | ibi 270 | . . . 4 ⊢ (𝑇 ∈ Tarski → (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) ∧ ∀𝑥 ∈ 𝒫 𝑇(𝑥 ≈ 𝑇 ∨ 𝑥 ∈ 𝑇))) |
3 | 2 | simpld 498 | . . 3 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦)) |
4 | simpl 486 | . . . 4 ⊢ ((𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) → 𝒫 𝑥 ⊆ 𝑇) | |
5 | 4 | ralimi 3093 | . . 3 ⊢ (∀𝑥 ∈ 𝑇 (𝒫 𝑥 ⊆ 𝑇 ∧ ∃𝑦 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑦) → ∀𝑥 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑇) |
6 | 3, 5 | syl 17 | . 2 ⊢ (𝑇 ∈ Tarski → ∀𝑥 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑇) |
7 | pweq 4514 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
8 | 7 | sseq1d 3926 | . . 3 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ⊆ 𝑇 ↔ 𝒫 𝐴 ⊆ 𝑇)) |
9 | 8 | rspccva 3543 | . 2 ⊢ ((∀𝑥 ∈ 𝑇 𝒫 𝑥 ⊆ 𝑇 ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) |
10 | 6, 9 | sylan 583 | 1 ⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 844 = wceq 1539 ∈ wcel 2112 ∀wral 3071 ∃wrex 3072 ⊆ wss 3861 𝒫 cpw 4498 class class class wbr 5037 ≈ cen 8538 Tarskictsk 10222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-v 3412 df-un 3866 df-in 3868 df-ss 3878 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-br 5038 df-tsk 10223 |
This theorem is referenced by: tsksdom 10230 tskss 10232 tsktrss 10235 inttsk 10248 tskcard 10255 |
Copyright terms: Public domain | W3C validator |