| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz6.12-1OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of tz6.12-1 6884 as of 23-Dec-2024. (Contributed by NM, 30-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| tz6.12-1OLD | ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 6522 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | iota1 6491 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦)) | |
| 3 | 2 | biimpac 478 | . 2 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (℩𝑦𝐴𝐹𝑦) = 𝑦) |
| 4 | 1, 3 | eqtrid 2777 | 1 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃!weu 2562 class class class wbr 5110 ℩cio 6465 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-sn 4593 df-pr 4595 df-uni 4875 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |