![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.12-1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of tz6.12-1 6904 as of 23-Dec-2024. (Contributed by NM, 30-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tz6.12-1OLD | ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 6541 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
2 | iota1 6510 | . . 3 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦)) | |
3 | 2 | biimpac 478 | . 2 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (℩𝑦𝐴𝐹𝑦) = 𝑦) |
4 | 1, 3 | eqtrid 2776 | 1 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∃!weu 2554 class class class wbr 5138 ℩cio 6483 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-un 3945 df-in 3947 df-ss 3957 df-sn 4621 df-pr 4623 df-uni 4900 df-iota 6485 df-fv 6541 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |