MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12-1 Structured version   Visualization version   GIF version

Theorem tz6.12-1 6911
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by SN, 23-Dec-2024.)
Assertion
Ref Expression
tz6.12-1 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴

Proof of Theorem tz6.12-1
StepHypRef Expression
1 tz6.12c 6910 . 2 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
21biimparc 481 1 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  ∃!weu 2563   class class class wbr 5147  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3952  df-in 3954  df-ss 3964  df-sn 4628  df-pr 4630  df-uni 4908  df-iota 6492  df-fv 6548
This theorem is referenced by:  tz6.12  6913  tz6.12cOLD  6915  funbrfv  6939  setrec2lem2  47641
  Copyright terms: Public domain W3C validator