![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.12-1 | Structured version Visualization version GIF version |
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by SN, 23-Dec-2024.) |
Ref | Expression |
---|---|
tz6.12-1 | ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz6.12c 6929 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) | |
2 | 1 | biimparc 479 | 1 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃!weu 2566 class class class wbr 5148 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-sn 4632 df-pr 4634 df-uni 4913 df-iota 6516 df-fv 6571 |
This theorem is referenced by: tz6.12 6932 tz6.12cOLD 6934 funbrfv 6958 setrec2lem2 48925 |
Copyright terms: Public domain | W3C validator |