MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12-1 Structured version   Visualization version   GIF version

Theorem tz6.12-1 6778
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
tz6.12-1 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴

Proof of Theorem tz6.12-1
StepHypRef Expression
1 df-fv 6426 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 iota1 6395 . . 3 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦))
32biimpac 478 . 2 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (℩𝑦𝐴𝐹𝑦) = 𝑦)
41, 3eqtrid 2790 1 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  ∃!weu 2568   class class class wbr 5070  cio 6374  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-in 3890  df-ss 3900  df-sn 4559  df-pr 4561  df-uni 4837  df-iota 6376  df-fv 6426
This theorem is referenced by:  tz6.12  6779  tz6.12c  6781  funbrfv  6802  setrec2lem2  46286
  Copyright terms: Public domain W3C validator