![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iota1 | Structured version Visualization version GIF version |
Description: Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
iota1 | ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 2577 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
2 | sp 2184 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ 𝑥 = 𝑧)) | |
3 | iotaval 6544 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
4 | 3 | eqeq2d 2751 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝑥 = (℩𝑥𝜑) ↔ 𝑥 = 𝑧)) |
5 | 2, 4 | bitr4d 282 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ 𝑥 = (℩𝑥𝜑))) |
6 | eqcom 2747 | . . . 4 ⊢ (𝑥 = (℩𝑥𝜑) ↔ (℩𝑥𝜑) = 𝑥) | |
7 | 5, 6 | bitrdi 287 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
8 | 7 | exlimiv 1929 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
9 | 1, 8 | sylbi 217 | 1 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1777 ∃!weu 2571 ℩cio 6523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 |
This theorem is referenced by: iota2df 6560 sniota 6564 tz6.12c 6942 tz6.12-1OLD 6944 opabiota 7004 riota1 7426 riota1a 7427 erovlem 8871 gsumval3lem2 19948 bnj1366 34805 funressndmafv2rn 47138 tz6.12-afv2 47155 |
Copyright terms: Public domain | W3C validator |