Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iota1 | Structured version Visualization version GIF version |
Description: Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
iota1 | ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 2593 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
2 | sp 2180 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ 𝑥 = 𝑧)) | |
3 | iotaval 6309 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
4 | 3 | eqeq2d 2769 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝑥 = (℩𝑥𝜑) ↔ 𝑥 = 𝑧)) |
5 | 2, 4 | bitr4d 285 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ 𝑥 = (℩𝑥𝜑))) |
6 | eqcom 2765 | . . . 4 ⊢ (𝑥 = (℩𝑥𝜑) ↔ (℩𝑥𝜑) = 𝑥) | |
7 | 5, 6 | bitrdi 290 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
8 | 7 | exlimiv 1931 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
9 | 1, 8 | sylbi 220 | 1 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1536 = wceq 1538 ∃wex 1781 ∃!weu 2587 ℩cio 6292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-sbc 3697 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-uni 4799 df-iota 6294 |
This theorem is referenced by: iota2df 6322 sniota 6326 tz6.12-1 6680 opabiota 6735 riota1 7129 riota1a 7130 erovlem 8403 gsumval3lem2 19094 bnj1366 32329 funressndmafv2rn 44147 tz6.12-afv2 44164 |
Copyright terms: Public domain | W3C validator |