MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota1 Structured version   Visualization version   GIF version

Theorem iota1 6312
Description: Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
iota1 (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))

Proof of Theorem iota1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eu6 2593 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 sp 2180 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → (𝜑𝑥 = 𝑧))
3 iotaval 6309 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧)
43eqeq2d 2769 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → (𝑥 = (℩𝑥𝜑) ↔ 𝑥 = 𝑧))
52, 4bitr4d 285 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → (𝜑𝑥 = (℩𝑥𝜑)))
6 eqcom 2765 . . . 4 (𝑥 = (℩𝑥𝜑) ↔ (℩𝑥𝜑) = 𝑥)
75, 6bitrdi 290 . . 3 (∀𝑥(𝜑𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
87exlimiv 1931 . 2 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
91, 8sylbi 220 1 (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536   = wceq 1538  wex 1781  ∃!weu 2587  cio 6292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-v 3411  df-sbc 3697  df-un 3863  df-in 3865  df-ss 3875  df-sn 4523  df-pr 4525  df-uni 4799  df-iota 6294
This theorem is referenced by:  iota2df  6322  sniota  6326  tz6.12-1  6680  opabiota  6735  riota1  7129  riota1a  7130  erovlem  8403  gsumval3lem2  19094  bnj1366  32329  funressndmafv2rn  44147  tz6.12-afv2  44164
  Copyright terms: Public domain W3C validator