MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iota1 Structured version   Visualization version   GIF version

Theorem iota1 6455
Description: Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
iota1 (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))

Proof of Theorem iota1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eu6 2569 . 2 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 sp 2186 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → (𝜑𝑥 = 𝑧))
3 iotaval 6450 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧)
43eqeq2d 2742 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑧) → (𝑥 = (℩𝑥𝜑) ↔ 𝑥 = 𝑧))
52, 4bitr4d 282 . . . 4 (∀𝑥(𝜑𝑥 = 𝑧) → (𝜑𝑥 = (℩𝑥𝜑)))
6 eqcom 2738 . . . 4 (𝑥 = (℩𝑥𝜑) ↔ (℩𝑥𝜑) = 𝑥)
75, 6bitrdi 287 . . 3 (∀𝑥(𝜑𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
87exlimiv 1931 . 2 (∃𝑧𝑥(𝜑𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
91, 8sylbi 217 1 (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  wex 1780  ∃!weu 2563  cio 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-ss 3914  df-sn 4572  df-pr 4574  df-uni 4855  df-iota 6432
This theorem is referenced by:  iota2df  6463  sniota  6467  tz6.12c  6839  opabiota  6899  riota1  7319  riota1a  7320  erovlem  8732  gsumval3lem2  19813  bnj1366  34833  funressndmafv2rn  47254  tz6.12-afv2  47271
  Copyright terms: Public domain W3C validator