| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iota1 | Structured version Visualization version GIF version | ||
| Description: Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| iota1 | ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 2569 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 2 | sp 2186 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ 𝑥 = 𝑧)) | |
| 3 | iotaval 6450 | . . . . . 6 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) = 𝑧) | |
| 4 | 3 | eqeq2d 2742 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝑥 = (℩𝑥𝜑) ↔ 𝑥 = 𝑧)) |
| 5 | 2, 4 | bitr4d 282 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ 𝑥 = (℩𝑥𝜑))) |
| 6 | eqcom 2738 | . . . 4 ⊢ (𝑥 = (℩𝑥𝜑) ↔ (℩𝑥𝜑) = 𝑥) | |
| 7 | 5, 6 | bitrdi 287 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
| 8 | 7 | exlimiv 1931 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
| 9 | 1, 8 | sylbi 217 | 1 ⊢ (∃!𝑥𝜑 → (𝜑 ↔ (℩𝑥𝜑) = 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∃!weu 2563 ℩cio 6430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-sn 4572 df-pr 4574 df-uni 4855 df-iota 6432 |
| This theorem is referenced by: iota2df 6463 sniota 6467 tz6.12c 6839 opabiota 6899 riota1 7319 riota1a 7320 erovlem 8732 gsumval3lem2 19813 bnj1366 34833 funressndmafv2rn 47254 tz6.12-afv2 47271 |
| Copyright terms: Public domain | W3C validator |