![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.12 | Structured version Visualization version GIF version |
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
tz6.12 | ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 4967 | . 2 ⊢ (𝐴𝐹𝑦 ↔ 〈𝐴, 𝑦〉 ∈ 𝐹) | |
2 | 1 | eubii 2630 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 ↔ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) |
3 | tz6.12-1 6565 | . 2 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) | |
4 | 1, 2, 3 | syl2anbr 598 | 1 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∃!weu 2611 〈cop 4482 class class class wbr 4966 ‘cfv 6230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-rex 3111 df-v 3439 df-sbc 3710 df-un 3868 df-sn 4477 df-pr 4479 df-uni 4750 df-br 4967 df-iota 6194 df-fv 6238 |
This theorem is referenced by: tz6.12f 6567 dfac5lem5 9404 tz6.12-afv 42914 |
Copyright terms: Public domain | W3C validator |