Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tz6.12 | Structured version Visualization version GIF version |
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
tz6.12 | ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5031 | . 2 ⊢ (𝐴𝐹𝑦 ↔ 〈𝐴, 𝑦〉 ∈ 𝐹) | |
2 | 1 | eubii 2605 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 ↔ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) |
3 | tz6.12-1 6678 | . 2 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) | |
4 | 1, 2, 3 | syl2anbr 602 | 1 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∃!weu 2588 〈cop 4526 class class class wbr 5030 ‘cfv 6333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-sbc 3698 df-un 3864 df-in 3866 df-ss 3876 df-sn 4521 df-pr 4523 df-uni 4797 df-br 5031 df-iota 6292 df-fv 6341 |
This theorem is referenced by: tz6.12f 6680 dfac5lem5 9577 tz6.12-afv 44087 |
Copyright terms: Public domain | W3C validator |