MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12c Structured version   Visualization version   GIF version

Theorem tz6.12c 6909
Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by SN, 23-Dec-2024.)
Assertion
Ref Expression
tz6.12c (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴

Proof of Theorem tz6.12c
StepHypRef Expression
1 df-fv 6550 . . 3 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
21eqeq1i 2739 . 2 ((𝐹𝐴) = 𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦)
3 iota1 6519 . 2 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦))
42, 3bitr4id 290 1 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  ∃!weu 2566   class class class wbr 5125  cio 6493  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3466  df-un 3938  df-ss 3950  df-sn 4609  df-pr 4611  df-uni 4890  df-iota 6495  df-fv 6550
This theorem is referenced by:  tz6.12-1  6910  tz6.12i  6915  fnbrfvb  6940
  Copyright terms: Public domain W3C validator