| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz6.12c | Structured version Visualization version GIF version | ||
| Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by SN, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| tz6.12c | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 6550 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | 1 | eqeq1i 2739 | . 2 ⊢ ((𝐹‘𝐴) = 𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦) |
| 3 | iota1 6519 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦)) | |
| 4 | 2, 3 | bitr4id 290 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∃!weu 2566 class class class wbr 5125 ℩cio 6493 ‘cfv 6542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-un 3938 df-ss 3950 df-sn 4609 df-pr 4611 df-uni 4890 df-iota 6495 df-fv 6550 |
| This theorem is referenced by: tz6.12-1 6910 tz6.12i 6915 fnbrfvb 6940 |
| Copyright terms: Public domain | W3C validator |