Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tz6.12c | Structured version Visualization version GIF version |
Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by SN, 23-Dec-2024.) |
Ref | Expression |
---|---|
tz6.12c | ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 6473 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
2 | 1 | eqeq1i 2741 | . 2 ⊢ ((𝐹‘𝐴) = 𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦) |
3 | iota1 6442 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦)) | |
4 | 2, 3 | bitr4id 289 | 1 ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∃!weu 2566 class class class wbr 5086 ℩cio 6415 ‘cfv 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3442 df-un 3901 df-in 3903 df-ss 3913 df-sn 4571 df-pr 4573 df-uni 4850 df-iota 6417 df-fv 6473 |
This theorem is referenced by: tz6.12-1 6834 tz6.12i 6839 fnbrfvb 6861 |
Copyright terms: Public domain | W3C validator |