MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12c Structured version   Visualization version   GIF version

Theorem tz6.12c 6799
Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
tz6.12c (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴

Proof of Theorem tz6.12c
StepHypRef Expression
1 nfeu1 2588 . . . 4 𝑦∃!𝑦 𝐴𝐹𝑦
2 nfv 1917 . . . 4 𝑦 𝐴𝐹(𝐹𝐴)
3 euex 2577 . . . 4 (∃!𝑦 𝐴𝐹𝑦 → ∃𝑦 𝐴𝐹𝑦)
4 tz6.12-1 6796 . . . . . 6 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
54expcom 414 . . . . 5 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 → (𝐹𝐴) = 𝑦))
6 breq2 5078 . . . . . 6 ((𝐹𝐴) = 𝑦 → (𝐴𝐹(𝐹𝐴) ↔ 𝐴𝐹𝑦))
76biimprd 247 . . . . 5 ((𝐹𝐴) = 𝑦 → (𝐴𝐹𝑦𝐴𝐹(𝐹𝐴)))
85, 7syli 39 . . . 4 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦𝐴𝐹(𝐹𝐴)))
91, 2, 3, 8exlimimdd 2212 . . 3 (∃!𝑦 𝐴𝐹𝑦𝐴𝐹(𝐹𝐴))
109, 6syl5ibcom 244 . 2 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
1110, 5impbid 211 1 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  ∃!weu 2568   class class class wbr 5074  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441
This theorem is referenced by:  tz6.12i  6800  fnbrfvb  6822
  Copyright terms: Public domain W3C validator