MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12c Structured version   Visualization version   GIF version

Theorem tz6.12c 6833
Description: Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by SN, 23-Dec-2024.)
Assertion
Ref Expression
tz6.12c (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴

Proof of Theorem tz6.12c
StepHypRef Expression
1 df-fv 6473 . . 3 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
21eqeq1i 2741 . 2 ((𝐹𝐴) = 𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦)
3 iota1 6442 . 2 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦))
42, 3bitr4id 289 1 (∃!𝑦 𝐴𝐹𝑦 → ((𝐹𝐴) = 𝑦𝐴𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  ∃!weu 2566   class class class wbr 5086  cio 6415  cfv 6465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3442  df-un 3901  df-in 3903  df-ss 3913  df-sn 4571  df-pr 4573  df-uni 4850  df-iota 6417  df-fv 6473
This theorem is referenced by:  tz6.12-1  6834  tz6.12i  6839  fnbrfvb  6861
  Copyright terms: Public domain W3C validator