| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnbrfvb | Structured version Visualization version GIF version | ||
| Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fnbrfvb | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (𝐹‘𝐵) = (𝐹‘𝐵) | |
| 2 | fvex 6835 | . . . . 5 ⊢ (𝐹‘𝐵) ∈ V | |
| 3 | eqeq2 2743 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝐵) → ((𝐹‘𝐵) = 𝑥 ↔ (𝐹‘𝐵) = (𝐹‘𝐵))) | |
| 4 | breq2 5095 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝐵) → (𝐵𝐹𝑥 ↔ 𝐵𝐹(𝐹‘𝐵))) | |
| 5 | 3, 4 | bibi12d 345 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝐵) → (((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥) ↔ ((𝐹‘𝐵) = (𝐹‘𝐵) ↔ 𝐵𝐹(𝐹‘𝐵)))) |
| 6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝐵) → (((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = (𝐹‘𝐵) ↔ 𝐵𝐹(𝐹‘𝐵))))) |
| 7 | fneu 6591 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑥 𝐵𝐹𝑥) | |
| 8 | tz6.12c 6844 | . . . . . 6 ⊢ (∃!𝑥 𝐵𝐹𝑥 → ((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) |
| 10 | 2, 6, 9 | vtocl 3513 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = (𝐹‘𝐵) ↔ 𝐵𝐹(𝐹‘𝐵))) |
| 11 | 1, 10 | mpbii 233 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵𝐹(𝐹‘𝐵)) |
| 12 | breq2 5095 | . . 3 ⊢ ((𝐹‘𝐵) = 𝐶 → (𝐵𝐹(𝐹‘𝐵) ↔ 𝐵𝐹𝐶)) | |
| 13 | 11, 12 | syl5ibcom 245 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 → 𝐵𝐹𝐶)) |
| 14 | fnfun 6581 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 15 | funbrfv 6870 | . . . 4 ⊢ (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹‘𝐵) = 𝐶)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹‘𝐵) = 𝐶)) |
| 17 | 16 | adantr 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵𝐹𝐶 → (𝐹‘𝐵) = 𝐶)) |
| 18 | 13, 17 | impbid 212 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃!weu 2563 class class class wbr 5091 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: fnopfvb 6873 funbrfvb 6875 fnbrfvb2 6877 dffn5 6880 feqmptdf 6892 fnsnfv 6901 fndmdif 6975 dffo4 7036 dff13 7188 isomin 7271 isoini 7272 br1steqg 7943 br2ndeqg 7944 1stconst 8030 2ndconst 8031 fsplit 8047 seqomlem3 8371 seqomlem4 8372 nqerrel 10820 imasleval 17442 znleval 21489 scutun12 27749 madeval2 27792 axcontlem5 28944 elnlfn 31903 adjbd1o 32060 fcoinvbr 32580 fv1stcnv 35809 fv2ndcnv 35810 fvbigcup 35935 fvsingle 35953 imageval 35963 brfullfun 35981 bj-mptval 37150 unccur 37642 poimirlem2 37661 poimirlem23 37682 pw2f1ocnv 43069 tfsconcat0i 43377 tfsconcatrev 43380 brcoffn 44062 funressnfv 47073 fnbrafvb 47184 |
| Copyright terms: Public domain | W3C validator |