| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnbrfvb | Structured version Visualization version GIF version | ||
| Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fnbrfvb | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (𝐹‘𝐵) = (𝐹‘𝐵) | |
| 2 | fvex 6888 | . . . . 5 ⊢ (𝐹‘𝐵) ∈ V | |
| 3 | eqeq2 2747 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝐵) → ((𝐹‘𝐵) = 𝑥 ↔ (𝐹‘𝐵) = (𝐹‘𝐵))) | |
| 4 | breq2 5123 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝐵) → (𝐵𝐹𝑥 ↔ 𝐵𝐹(𝐹‘𝐵))) | |
| 5 | 3, 4 | bibi12d 345 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝐵) → (((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥) ↔ ((𝐹‘𝐵) = (𝐹‘𝐵) ↔ 𝐵𝐹(𝐹‘𝐵)))) |
| 6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝐵) → (((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = (𝐹‘𝐵) ↔ 𝐵𝐹(𝐹‘𝐵))))) |
| 7 | fneu 6647 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑥 𝐵𝐹𝑥) | |
| 8 | tz6.12c 6897 | . . . . . 6 ⊢ (∃!𝑥 𝐵𝐹𝑥 → ((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) |
| 10 | 2, 6, 9 | vtocl 3537 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = (𝐹‘𝐵) ↔ 𝐵𝐹(𝐹‘𝐵))) |
| 11 | 1, 10 | mpbii 233 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵𝐹(𝐹‘𝐵)) |
| 12 | breq2 5123 | . . 3 ⊢ ((𝐹‘𝐵) = 𝐶 → (𝐵𝐹(𝐹‘𝐵) ↔ 𝐵𝐹𝐶)) | |
| 13 | 11, 12 | syl5ibcom 245 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 → 𝐵𝐹𝐶)) |
| 14 | fnfun 6637 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 15 | funbrfv 6926 | . . . 4 ⊢ (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹‘𝐵) = 𝐶)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹‘𝐵) = 𝐶)) |
| 17 | 16 | adantr 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵𝐹𝐶 → (𝐹‘𝐵) = 𝐶)) |
| 18 | 13, 17 | impbid 212 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃!weu 2567 class class class wbr 5119 Fun wfun 6524 Fn wfn 6525 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fn 6533 df-fv 6538 |
| This theorem is referenced by: fnopfvb 6929 funbrfvb 6931 fnbrfvb2 6933 dffn5 6936 feqmptdf 6948 fnsnfv 6957 fndmdif 7031 dffo4 7092 dff13 7246 isomin 7329 isoini 7330 br1steqg 8008 br2ndeqg 8009 1stconst 8097 2ndconst 8098 fsplit 8114 seqomlem3 8464 seqomlem4 8465 nqerrel 10944 imasleval 17553 znleval 21513 scutun12 27772 madeval2 27809 axcontlem5 28893 elnlfn 31855 adjbd1o 32012 fcoinvbr 32532 fv1stcnv 35740 fv2ndcnv 35741 fvbigcup 35866 fvsingle 35884 imageval 35894 brfullfun 35912 bj-mptval 37081 unccur 37573 poimirlem2 37592 poimirlem23 37613 pw2f1ocnv 43008 tfsconcat0i 43316 tfsconcatrev 43319 brcoffn 44001 funressnfv 47020 fnbrafvb 47131 |
| Copyright terms: Public domain | W3C validator |