![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnbrfvb | Structured version Visualization version GIF version |
Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fnbrfvb | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 ⊢ (𝐹‘𝐵) = (𝐹‘𝐵) | |
2 | fvex 6905 | . . . . 5 ⊢ (𝐹‘𝐵) ∈ V | |
3 | eqeq2 2745 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝐵) → ((𝐹‘𝐵) = 𝑥 ↔ (𝐹‘𝐵) = (𝐹‘𝐵))) | |
4 | breq2 5153 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝐵) → (𝐵𝐹𝑥 ↔ 𝐵𝐹(𝐹‘𝐵))) | |
5 | 3, 4 | bibi12d 346 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝐵) → (((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥) ↔ ((𝐹‘𝐵) = (𝐹‘𝐵) ↔ 𝐵𝐹(𝐹‘𝐵)))) |
6 | 5 | imbi2d 341 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝐵) → (((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = (𝐹‘𝐵) ↔ 𝐵𝐹(𝐹‘𝐵))))) |
7 | fneu 6660 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑥 𝐵𝐹𝑥) | |
8 | tz6.12c 6914 | . . . . . 6 ⊢ (∃!𝑥 𝐵𝐹𝑥 → ((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) |
10 | 2, 6, 9 | vtocl 3550 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = (𝐹‘𝐵) ↔ 𝐵𝐹(𝐹‘𝐵))) |
11 | 1, 10 | mpbii 232 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵𝐹(𝐹‘𝐵)) |
12 | breq2 5153 | . . 3 ⊢ ((𝐹‘𝐵) = 𝐶 → (𝐵𝐹(𝐹‘𝐵) ↔ 𝐵𝐹𝐶)) | |
13 | 11, 12 | syl5ibcom 244 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 → 𝐵𝐹𝐶)) |
14 | fnfun 6650 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
15 | funbrfv 6943 | . . . 4 ⊢ (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹‘𝐵) = 𝐶)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹‘𝐵) = 𝐶)) |
17 | 16 | adantr 482 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵𝐹𝐶 → (𝐹‘𝐵) = 𝐶)) |
18 | 13, 17 | impbid 211 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃!weu 2563 class class class wbr 5149 Fun wfun 6538 Fn wfn 6539 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fn 6547 df-fv 6552 |
This theorem is referenced by: fnopfvb 6946 funbrfvb 6947 fnbrfvb2 6949 dffn5 6951 feqmptdf 6963 fnsnfv 6971 fnsnfvOLD 6972 fndmdif 7044 dffo4 7105 dff13 7254 isomin 7334 isoini 7335 br1steqg 7997 br2ndeqg 7998 1stconst 8086 2ndconst 8087 fsplit 8103 seqomlem3 8452 seqomlem4 8453 nqerrel 10927 imasleval 17487 znleval 21110 scutun12 27311 madeval2 27348 axcontlem5 28226 elnlfn 31181 adjbd1o 31338 fcoinvbr 31836 fv1stcnv 34748 fv2ndcnv 34749 fvbigcup 34874 fvsingle 34892 imageval 34902 brfullfun 34920 bj-mptval 35998 unccur 36471 poimirlem2 36490 poimirlem23 36511 pw2f1ocnv 41776 tfsconcat0i 42095 tfsconcatrev 42098 brcoffn 42781 funressnfv 45753 fnbrafvb 45862 |
Copyright terms: Public domain | W3C validator |