MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnbrfvb Structured version   Visualization version   GIF version

Theorem fnbrfvb 6721
Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnbrfvb ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))

Proof of Theorem fnbrfvb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . 4 (𝐹𝐵) = (𝐹𝐵)
2 fvex 6686 . . . . 5 (𝐹𝐵) ∈ V
3 eqeq2 2836 . . . . . . 7 (𝑥 = (𝐹𝐵) → ((𝐹𝐵) = 𝑥 ↔ (𝐹𝐵) = (𝐹𝐵)))
4 breq2 5073 . . . . . . 7 (𝑥 = (𝐹𝐵) → (𝐵𝐹𝑥𝐵𝐹(𝐹𝐵)))
53, 4bibi12d 348 . . . . . 6 (𝑥 = (𝐹𝐵) → (((𝐹𝐵) = 𝑥𝐵𝐹𝑥) ↔ ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵))))
65imbi2d 343 . . . . 5 (𝑥 = (𝐹𝐵) → (((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥)) ↔ ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵)))))
7 fneu 6464 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑥 𝐵𝐹𝑥)
8 tz6.12c 6698 . . . . . 6 (∃!𝑥 𝐵𝐹𝑥 → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
97, 8syl 17 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
102, 6, 9vtocl 3562 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵)))
111, 10mpbii 235 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵𝐹(𝐹𝐵))
12 breq2 5073 . . 3 ((𝐹𝐵) = 𝐶 → (𝐵𝐹(𝐹𝐵) ↔ 𝐵𝐹𝐶))
1311, 12syl5ibcom 247 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
14 fnfun 6456 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
15 funbrfv 6719 . . . 4 (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
1614, 15syl 17 . . 3 (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
1716adantr 483 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
1813, 17impbid 214 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  ∃!weu 2652   class class class wbr 5069  Fun wfun 6352   Fn wfn 6353  cfv 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-iota 6317  df-fun 6360  df-fn 6361  df-fv 6366
This theorem is referenced by:  fnopfvb  6722  funbrfvb  6723  fnbrfvb2  6725  dffn5  6727  feqmptdf  6738  fnsnfv  6746  fndmdif  6815  dffo4  6872  dff13  7016  isomin  7093  isoini  7094  br1steqg  7714  br2ndeqg  7715  1stconst  7798  2ndconst  7799  fsplit  7815  fsplitOLD  7816  seqomlem3  8091  seqomlem4  8092  nqerrel  10357  imasleval  16817  znleval  20704  axcontlem5  26757  elnlfn  29708  adjbd1o  29865  fcoinvbr  30361  fv1stcnv  33024  fv2ndcnv  33025  trpredpred  33071  scutun12  33275  madeval2  33294  fvbigcup  33367  fvsingle  33385  imageval  33395  brfullfun  33413  bj-mptval  34413  unccur  34879  poimirlem2  34898  poimirlem23  34919  pw2f1ocnv  39640  brcoffn  40386  funressnfv  43285  fnbrafvb  43360
  Copyright terms: Public domain W3C validator