| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnbrfvb | Structured version Visualization version GIF version | ||
| Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fnbrfvb | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (𝐹‘𝐵) = (𝐹‘𝐵) | |
| 2 | fvex 6871 | . . . . 5 ⊢ (𝐹‘𝐵) ∈ V | |
| 3 | eqeq2 2741 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝐵) → ((𝐹‘𝐵) = 𝑥 ↔ (𝐹‘𝐵) = (𝐹‘𝐵))) | |
| 4 | breq2 5111 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝐵) → (𝐵𝐹𝑥 ↔ 𝐵𝐹(𝐹‘𝐵))) | |
| 5 | 3, 4 | bibi12d 345 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝐵) → (((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥) ↔ ((𝐹‘𝐵) = (𝐹‘𝐵) ↔ 𝐵𝐹(𝐹‘𝐵)))) |
| 6 | 5 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝐵) → (((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) ↔ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = (𝐹‘𝐵) ↔ 𝐵𝐹(𝐹‘𝐵))))) |
| 7 | fneu 6628 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑥 𝐵𝐹𝑥) | |
| 8 | tz6.12c 6880 | . . . . . 6 ⊢ (∃!𝑥 𝐵𝐹𝑥 → ((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) |
| 10 | 2, 6, 9 | vtocl 3524 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = (𝐹‘𝐵) ↔ 𝐵𝐹(𝐹‘𝐵))) |
| 11 | 1, 10 | mpbii 233 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵𝐹(𝐹‘𝐵)) |
| 12 | breq2 5111 | . . 3 ⊢ ((𝐹‘𝐵) = 𝐶 → (𝐵𝐹(𝐹‘𝐵) ↔ 𝐵𝐹𝐶)) | |
| 13 | 11, 12 | syl5ibcom 245 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 → 𝐵𝐹𝐶)) |
| 14 | fnfun 6618 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 15 | funbrfv 6909 | . . . 4 ⊢ (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹‘𝐵) = 𝐶)) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹‘𝐵) = 𝐶)) |
| 17 | 16 | adantr 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵𝐹𝐶 → (𝐹‘𝐵) = 𝐶)) |
| 18 | 13, 17 | impbid 212 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!weu 2561 class class class wbr 5107 Fun wfun 6505 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: fnopfvb 6912 funbrfvb 6914 fnbrfvb2 6916 dffn5 6919 feqmptdf 6931 fnsnfv 6940 fndmdif 7014 dffo4 7075 dff13 7229 isomin 7312 isoini 7313 br1steqg 7990 br2ndeqg 7991 1stconst 8079 2ndconst 8080 fsplit 8096 seqomlem3 8420 seqomlem4 8421 nqerrel 10885 imasleval 17504 znleval 21464 scutun12 27722 madeval2 27761 axcontlem5 28895 elnlfn 31857 adjbd1o 32014 fcoinvbr 32534 fv1stcnv 35764 fv2ndcnv 35765 fvbigcup 35890 fvsingle 35908 imageval 35918 brfullfun 35936 bj-mptval 37105 unccur 37597 poimirlem2 37616 poimirlem23 37637 pw2f1ocnv 43026 tfsconcat0i 43334 tfsconcatrev 43337 brcoffn 44019 funressnfv 47044 fnbrafvb 47155 |
| Copyright terms: Public domain | W3C validator |