MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnbrfvb Structured version   Visualization version   GIF version

Theorem fnbrfvb 6877
Description: Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fnbrfvb ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))

Proof of Theorem fnbrfvb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (𝐹𝐵) = (𝐹𝐵)
2 fvex 6839 . . . . 5 (𝐹𝐵) ∈ V
3 eqeq2 2741 . . . . . . 7 (𝑥 = (𝐹𝐵) → ((𝐹𝐵) = 𝑥 ↔ (𝐹𝐵) = (𝐹𝐵)))
4 breq2 5099 . . . . . . 7 (𝑥 = (𝐹𝐵) → (𝐵𝐹𝑥𝐵𝐹(𝐹𝐵)))
53, 4bibi12d 345 . . . . . 6 (𝑥 = (𝐹𝐵) → (((𝐹𝐵) = 𝑥𝐵𝐹𝑥) ↔ ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵))))
65imbi2d 340 . . . . 5 (𝑥 = (𝐹𝐵) → (((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥)) ↔ ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵)))))
7 fneu 6596 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑥 𝐵𝐹𝑥)
8 tz6.12c 6848 . . . . . 6 (∃!𝑥 𝐵𝐹𝑥 → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
97, 8syl 17 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑥𝐵𝐹𝑥))
102, 6, 9vtocl 3515 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = (𝐹𝐵) ↔ 𝐵𝐹(𝐹𝐵)))
111, 10mpbii 233 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵𝐹(𝐹𝐵))
12 breq2 5099 . . 3 ((𝐹𝐵) = 𝐶 → (𝐵𝐹(𝐹𝐵) ↔ 𝐵𝐹𝐶))
1311, 12syl5ibcom 245 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
14 fnfun 6586 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
15 funbrfv 6875 . . . 4 (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
1614, 15syl 17 . . 3 (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
1716adantr 480 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐵𝐹𝐶 → (𝐹𝐵) = 𝐶))
1813, 17impbid 212 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!weu 2561   class class class wbr 5095  Fun wfun 6480   Fn wfn 6481  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  fnopfvb  6878  funbrfvb  6880  fnbrfvb2  6882  dffn5  6885  feqmptdf  6897  fnsnfv  6906  fndmdif  6980  dffo4  7041  dff13  7195  isomin  7278  isoini  7279  br1steqg  7953  br2ndeqg  7954  1stconst  8040  2ndconst  8041  fsplit  8057  seqomlem3  8381  seqomlem4  8382  nqerrel  10845  imasleval  17463  znleval  21479  scutun12  27739  madeval2  27781  axcontlem5  28931  elnlfn  31890  adjbd1o  32047  fcoinvbr  32567  fv1stcnv  35749  fv2ndcnv  35750  fvbigcup  35875  fvsingle  35893  imageval  35903  brfullfun  35921  bj-mptval  37090  unccur  37582  poimirlem2  37601  poimirlem23  37622  pw2f1ocnv  43010  tfsconcat0i  43318  tfsconcatrev  43321  brcoffn  44003  funressnfv  47028  fnbrafvb  47139
  Copyright terms: Public domain W3C validator