![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funssfv | Structured version Visualization version GIF version |
Description: The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
funssfv | ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 6926 | . . . 4 ⊢ (𝐴 ∈ dom 𝐺 → ((𝐹 ↾ dom 𝐺)‘𝐴) = (𝐹‘𝐴)) | |
2 | 1 | eqcomd 2741 | . . 3 ⊢ (𝐴 ∈ dom 𝐺 → (𝐹‘𝐴) = ((𝐹 ↾ dom 𝐺)‘𝐴)) |
3 | funssres 6612 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
4 | 3 | fveq1d 6909 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → ((𝐹 ↾ dom 𝐺)‘𝐴) = (𝐺‘𝐴)) |
5 | 2, 4 | sylan9eqr 2797 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
6 | 5 | 3impa 1109 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 dom cdm 5689 ↾ cres 5691 Fun wfun 6557 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-res 5701 df-iota 6516 df-fun 6565 df-fv 6571 |
This theorem is referenced by: fviunfun 7968 funelss 8071 funsssuppss 8214 frrlem10 8319 wfrlem12OLD 8359 wfrlem14OLD 8361 tfrlem9 8424 tfrlem11 8427 ac6sfi 9318 axdc3lem2 10489 axdc3lem4 10491 imasvscaval 17585 pserdv 26488 subgruhgredgd 29316 subumgredg2 29317 subupgr 29319 sspn 30765 bnj945 34766 bnj1502 34841 bnj545 34888 bnj548 34890 subfacp1lem2a 35165 subfacp1lem2b 35166 subfacp1lem5 35169 cvmliftlem10 35279 cvmliftlem13 35281 |
Copyright terms: Public domain | W3C validator |