MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funssfv Structured version   Visualization version   GIF version

Theorem funssfv 6852
Description: The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssfv ((Fun 𝐹𝐺𝐹𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem funssfv
StepHypRef Expression
1 fvres 6850 . . . 4 (𝐴 ∈ dom 𝐺 → ((𝐹 ↾ dom 𝐺)‘𝐴) = (𝐹𝐴))
21eqcomd 2739 . . 3 (𝐴 ∈ dom 𝐺 → (𝐹𝐴) = ((𝐹 ↾ dom 𝐺)‘𝐴))
3 funssres 6533 . . . 4 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
43fveq1d 6833 . . 3 ((Fun 𝐹𝐺𝐹) → ((𝐹 ↾ dom 𝐺)‘𝐴) = (𝐺𝐴))
52, 4sylan9eqr 2790 . 2 (((Fun 𝐹𝐺𝐹) ∧ 𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
653impa 1109 1 ((Fun 𝐹𝐺𝐹𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wss 3898  dom cdm 5621  cres 5623  Fun wfun 6483  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-res 5633  df-iota 6445  df-fun 6491  df-fv 6497
This theorem is referenced by:  fviunfun  7886  funelss  7988  funsssuppss  8129  frrlem10  8234  tfrlem9  8313  tfrlem11  8316  ac6sfi  9179  axdc3lem2  10353  axdc3lem4  10355  imasvscaval  17450  pserdv  26386  subgruhgredgd  29283  subumgredg2  29284  subupgr  29286  sspn  30737  bnj945  34857  bnj1502  34932  bnj545  34979  bnj548  34981  subfacp1lem2a  35296  subfacp1lem2b  35297  subfacp1lem5  35300  cvmliftlem10  35410  cvmliftlem13  35412
  Copyright terms: Public domain W3C validator