| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funssfv | Structured version Visualization version GIF version | ||
| Description: The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| funssfv | ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres 6850 | . . . 4 ⊢ (𝐴 ∈ dom 𝐺 → ((𝐹 ↾ dom 𝐺)‘𝐴) = (𝐹‘𝐴)) | |
| 2 | 1 | eqcomd 2739 | . . 3 ⊢ (𝐴 ∈ dom 𝐺 → (𝐹‘𝐴) = ((𝐹 ↾ dom 𝐺)‘𝐴)) |
| 3 | funssres 6533 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
| 4 | 3 | fveq1d 6833 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → ((𝐹 ↾ dom 𝐺)‘𝐴) = (𝐺‘𝐴)) |
| 5 | 2, 4 | sylan9eqr 2790 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| 6 | 5 | 3impa 1109 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 dom cdm 5621 ↾ cres 5623 Fun wfun 6483 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-res 5633 df-iota 6445 df-fun 6491 df-fv 6497 |
| This theorem is referenced by: fviunfun 7886 funelss 7988 funsssuppss 8129 frrlem10 8234 tfrlem9 8313 tfrlem11 8316 ac6sfi 9179 axdc3lem2 10353 axdc3lem4 10355 imasvscaval 17450 pserdv 26386 subgruhgredgd 29283 subumgredg2 29284 subupgr 29286 sspn 30737 bnj945 34857 bnj1502 34932 bnj545 34979 bnj548 34981 subfacp1lem2a 35296 subfacp1lem2b 35297 subfacp1lem5 35300 cvmliftlem10 35410 cvmliftlem13 35412 |
| Copyright terms: Public domain | W3C validator |