| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funssfv | Structured version Visualization version GIF version | ||
| Description: The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| funssfv | ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres 6845 | . . . 4 ⊢ (𝐴 ∈ dom 𝐺 → ((𝐹 ↾ dom 𝐺)‘𝐴) = (𝐹‘𝐴)) | |
| 2 | 1 | eqcomd 2735 | . . 3 ⊢ (𝐴 ∈ dom 𝐺 → (𝐹‘𝐴) = ((𝐹 ↾ dom 𝐺)‘𝐴)) |
| 3 | funssres 6530 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
| 4 | 3 | fveq1d 6828 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → ((𝐹 ↾ dom 𝐺)‘𝐴) = (𝐺‘𝐴)) |
| 5 | 2, 4 | sylan9eqr 2786 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| 6 | 5 | 3impa 1109 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 dom cdm 5623 ↾ cres 5625 Fun wfun 6480 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-res 5635 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: fviunfun 7887 funelss 7989 funsssuppss 8130 frrlem10 8235 tfrlem9 8314 tfrlem11 8317 ac6sfi 9189 axdc3lem2 10364 axdc3lem4 10366 imasvscaval 17460 pserdv 26355 subgruhgredgd 29247 subumgredg2 29248 subupgr 29250 sspn 30698 bnj945 34742 bnj1502 34817 bnj545 34864 bnj548 34866 subfacp1lem2a 35155 subfacp1lem2b 35156 subfacp1lem5 35159 cvmliftlem10 35269 cvmliftlem13 35271 |
| Copyright terms: Public domain | W3C validator |