MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funssfv Structured version   Visualization version   GIF version

Theorem funssfv 6941
Description: The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssfv ((Fun 𝐹𝐺𝐹𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem funssfv
StepHypRef Expression
1 fvres 6939 . . . 4 (𝐴 ∈ dom 𝐺 → ((𝐹 ↾ dom 𝐺)‘𝐴) = (𝐹𝐴))
21eqcomd 2746 . . 3 (𝐴 ∈ dom 𝐺 → (𝐹𝐴) = ((𝐹 ↾ dom 𝐺)‘𝐴))
3 funssres 6622 . . . 4 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
43fveq1d 6922 . . 3 ((Fun 𝐹𝐺𝐹) → ((𝐹 ↾ dom 𝐺)‘𝐴) = (𝐺𝐴))
52, 4sylan9eqr 2802 . 2 (((Fun 𝐹𝐺𝐹) ∧ 𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
653impa 1110 1 ((Fun 𝐹𝐺𝐹𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wss 3976  dom cdm 5700  cres 5702  Fun wfun 6567  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  fviunfun  7985  funelss  8088  funsssuppss  8231  frrlem10  8336  wfrlem12OLD  8376  wfrlem14OLD  8378  tfrlem9  8441  tfrlem11  8444  ac6sfi  9348  axdc3lem2  10520  axdc3lem4  10522  imasvscaval  17598  pserdv  26491  subgruhgredgd  29319  subumgredg2  29320  subupgr  29322  sspn  30768  bnj945  34749  bnj1502  34824  bnj545  34871  bnj548  34873  subfacp1lem2a  35148  subfacp1lem2b  35149  subfacp1lem5  35152  cvmliftlem10  35262  cvmliftlem13  35264
  Copyright terms: Public domain W3C validator