MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funssfv Structured version   Visualization version   GIF version

Theorem funssfv 6843
Description: The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssfv ((Fun 𝐹𝐺𝐹𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem funssfv
StepHypRef Expression
1 fvres 6841 . . . 4 (𝐴 ∈ dom 𝐺 → ((𝐹 ↾ dom 𝐺)‘𝐴) = (𝐹𝐴))
21eqcomd 2737 . . 3 (𝐴 ∈ dom 𝐺 → (𝐹𝐴) = ((𝐹 ↾ dom 𝐺)‘𝐴))
3 funssres 6525 . . . 4 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
43fveq1d 6824 . . 3 ((Fun 𝐹𝐺𝐹) → ((𝐹 ↾ dom 𝐺)‘𝐴) = (𝐺𝐴))
52, 4sylan9eqr 2788 . 2 (((Fun 𝐹𝐺𝐹) ∧ 𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
653impa 1109 1 ((Fun 𝐹𝐺𝐹𝐴 ∈ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3902  dom cdm 5616  cres 5618  Fun wfun 6475  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  fviunfun  7877  funelss  7979  funsssuppss  8120  frrlem10  8225  tfrlem9  8304  tfrlem11  8307  ac6sfi  9168  axdc3lem2  10342  axdc3lem4  10344  imasvscaval  17442  pserdv  26367  subgruhgredgd  29263  subumgredg2  29264  subupgr  29266  sspn  30714  bnj945  34783  bnj1502  34858  bnj545  34905  bnj548  34907  subfacp1lem2a  35222  subfacp1lem2b  35223  subfacp1lem5  35226  cvmliftlem10  35336  cvmliftlem13  35338
  Copyright terms: Public domain W3C validator