MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funtp Structured version   Visualization version   GIF version

Theorem funtp 6623
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
funtp.1 𝐴 ∈ V
funtp.2 𝐵 ∈ V
funtp.3 𝐶 ∈ V
funtp.4 𝐷 ∈ V
funtp.5 𝐸 ∈ V
funtp.6 𝐹 ∈ V
Assertion
Ref Expression
funtp ((𝐴𝐵𝐴𝐶𝐵𝐶) → Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})

Proof of Theorem funtp
StepHypRef Expression
1 funtp.1 . . . . . 6 𝐴 ∈ V
2 funtp.2 . . . . . 6 𝐵 ∈ V
3 funtp.4 . . . . . 6 𝐷 ∈ V
4 funtp.5 . . . . . 6 𝐸 ∈ V
51, 2, 3, 4funpr 6622 . . . . 5 (𝐴𝐵 → Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩})
6 funtp.3 . . . . . 6 𝐶 ∈ V
7 funtp.6 . . . . . 6 𝐹 ∈ V
86, 7funsn 6619 . . . . 5 Fun {⟨𝐶, 𝐹⟩}
95, 8jctir 520 . . . 4 (𝐴𝐵 → (Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∧ Fun {⟨𝐶, 𝐹⟩}))
103, 4dmprop 6237 . . . . . . 7 dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} = {𝐴, 𝐵}
11 df-pr 4629 . . . . . . 7 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
1210, 11eqtri 2765 . . . . . 6 dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} = ({𝐴} ∪ {𝐵})
137dmsnop 6236 . . . . . 6 dom {⟨𝐶, 𝐹⟩} = {𝐶}
1412, 13ineq12i 4218 . . . . 5 (dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∩ dom {⟨𝐶, 𝐹⟩}) = (({𝐴} ∪ {𝐵}) ∩ {𝐶})
15 disjsn2 4712 . . . . . . 7 (𝐴𝐶 → ({𝐴} ∩ {𝐶}) = ∅)
16 disjsn2 4712 . . . . . . 7 (𝐵𝐶 → ({𝐵} ∩ {𝐶}) = ∅)
1715, 16anim12i 613 . . . . . 6 ((𝐴𝐶𝐵𝐶) → (({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅))
18 undisj1 4462 . . . . . 6 ((({𝐴} ∩ {𝐶}) = ∅ ∧ ({𝐵} ∩ {𝐶}) = ∅) ↔ (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = ∅)
1917, 18sylib 218 . . . . 5 ((𝐴𝐶𝐵𝐶) → (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = ∅)
2014, 19eqtrid 2789 . . . 4 ((𝐴𝐶𝐵𝐶) → (dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∩ dom {⟨𝐶, 𝐹⟩}) = ∅)
21 funun 6612 . . . 4 (((Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∧ Fun {⟨𝐶, 𝐹⟩}) ∧ (dom {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∩ dom {⟨𝐶, 𝐹⟩}) = ∅) → Fun ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩}))
229, 20, 21syl2an 596 . . 3 ((𝐴𝐵 ∧ (𝐴𝐶𝐵𝐶)) → Fun ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩}))
23223impb 1115 . 2 ((𝐴𝐵𝐴𝐶𝐵𝐶) → Fun ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩}))
24 df-tp 4631 . . 3 {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})
2524funeqi 6587 . 2 (Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} ↔ Fun ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩}))
2623, 25sylibr 234 1 ((𝐴𝐵𝐴𝐶𝐵𝐶) → Fun {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  Vcvv 3480  cun 3949  cin 3950  c0 4333  {csn 4626  {cpr 4628  {ctp 4630  cop 4632  dom cdm 5685  Fun wfun 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-fun 6563
This theorem is referenced by:  fntp  6627  fntpb  7229  cnfldfunALT  21379  cnfldfunALTOLD  21392  cnfldfunALTOLDOLD  21393
  Copyright terms: Public domain W3C validator