MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniinqs Structured version   Visualization version   GIF version

Theorem uniinqs 8586
Description: Class union distributes over the intersection of two subclasses of a quotient space. Compare uniin 4865. (Contributed by FL, 25-May-2007.) (Proof shortened by Mario Carneiro, 11-Jul-2014.)
Hypothesis
Ref Expression
uniinqs.1 𝑅 Er 𝑋
Assertion
Ref Expression
uniinqs ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → (𝐵𝐶) = ( 𝐵 𝐶))

Proof of Theorem uniinqs
Dummy variables 𝑏 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniin 4865 . . 3 (𝐵𝐶) ⊆ ( 𝐵 𝐶)
21a1i 11 . 2 ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → (𝐵𝐶) ⊆ ( 𝐵 𝐶))
3 eluni2 4843 . . . . . 6 (𝑥 𝐵 ↔ ∃𝑏𝐵 𝑥𝑏)
4 eluni2 4843 . . . . . 6 (𝑥 𝐶 ↔ ∃𝑐𝐶 𝑥𝑐)
53, 4anbi12i 627 . . . . 5 ((𝑥 𝐵𝑥 𝐶) ↔ (∃𝑏𝐵 𝑥𝑏 ∧ ∃𝑐𝐶 𝑥𝑐))
6 elin 3903 . . . . 5 (𝑥 ∈ ( 𝐵 𝐶) ↔ (𝑥 𝐵𝑥 𝐶))
7 reeanv 3294 . . . . 5 (∃𝑏𝐵𝑐𝐶 (𝑥𝑏𝑥𝑐) ↔ (∃𝑏𝐵 𝑥𝑏 ∧ ∃𝑐𝐶 𝑥𝑐))
85, 6, 73bitr4i 303 . . . 4 (𝑥 ∈ ( 𝐵 𝐶) ↔ ∃𝑏𝐵𝑐𝐶 (𝑥𝑏𝑥𝑐))
9 simp3l 1200 . . . . . . 7 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑥𝑏)
10 simp2l 1198 . . . . . . . 8 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑏𝐵)
11 inelcm 4398 . . . . . . . . . . 11 ((𝑥𝑏𝑥𝑐) → (𝑏𝑐) ≠ ∅)
12113ad2ant3 1134 . . . . . . . . . 10 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → (𝑏𝑐) ≠ ∅)
13 uniinqs.1 . . . . . . . . . . . . . 14 𝑅 Er 𝑋
1413a1i 11 . . . . . . . . . . . . 13 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑅 Er 𝑋)
15 simp1l 1196 . . . . . . . . . . . . . 14 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝐵 ⊆ (𝐴 / 𝑅))
1615, 10sseldd 3922 . . . . . . . . . . . . 13 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑏 ∈ (𝐴 / 𝑅))
17 simp1r 1197 . . . . . . . . . . . . . 14 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝐶 ⊆ (𝐴 / 𝑅))
18 simp2r 1199 . . . . . . . . . . . . . 14 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑐𝐶)
1917, 18sseldd 3922 . . . . . . . . . . . . 13 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑐 ∈ (𝐴 / 𝑅))
2014, 16, 19qsdisj 8583 . . . . . . . . . . . 12 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → (𝑏 = 𝑐 ∨ (𝑏𝑐) = ∅))
2120ord 861 . . . . . . . . . . 11 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → (¬ 𝑏 = 𝑐 → (𝑏𝑐) = ∅))
2221necon1ad 2960 . . . . . . . . . 10 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → ((𝑏𝑐) ≠ ∅ → 𝑏 = 𝑐))
2312, 22mpd 15 . . . . . . . . 9 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑏 = 𝑐)
2423, 18eqeltrd 2839 . . . . . . . 8 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑏𝐶)
2510, 24elind 4128 . . . . . . 7 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑏 ∈ (𝐵𝐶))
26 elunii 4844 . . . . . . 7 ((𝑥𝑏𝑏 ∈ (𝐵𝐶)) → 𝑥 (𝐵𝐶))
279, 25, 26syl2anc 584 . . . . . 6 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶) ∧ (𝑥𝑏𝑥𝑐)) → 𝑥 (𝐵𝐶))
28273expia 1120 . . . . 5 (((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) ∧ (𝑏𝐵𝑐𝐶)) → ((𝑥𝑏𝑥𝑐) → 𝑥 (𝐵𝐶)))
2928rexlimdvva 3223 . . . 4 ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → (∃𝑏𝐵𝑐𝐶 (𝑥𝑏𝑥𝑐) → 𝑥 (𝐵𝐶)))
308, 29syl5bi 241 . . 3 ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → (𝑥 ∈ ( 𝐵 𝐶) → 𝑥 (𝐵𝐶)))
3130ssrdv 3927 . 2 ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → ( 𝐵 𝐶) ⊆ (𝐵𝐶))
322, 31eqssd 3938 1 ((𝐵 ⊆ (𝐴 / 𝑅) ∧ 𝐶 ⊆ (𝐴 / 𝑅)) → (𝐵𝐶) = ( 𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cin 3886  wss 3887  c0 4256   cuni 4839   Er wer 8495   / cqs 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-er 8498  df-ec 8500  df-qs 8504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator