| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdunirnN | Structured version Visualization version GIF version | ||
| Description: Union of the range of the map defined by df-mapd 41612. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mapdrn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdrn.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| mapdrn.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdrn.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdrn.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| mapdrn.l | ⊢ 𝐿 = (LKer‘𝑈) |
| mapdunirn.c | ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
| mapdunirn.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| mapdunirnN | ⊢ (𝜑 → ∪ ran 𝑀 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdrn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdrn.o | . . . 4 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 3 | mapdrn.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 4 | mapdrn.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | mapdrn.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 6 | mapdrn.l | . . . 4 ⊢ 𝐿 = (LKer‘𝑈) | |
| 7 | eqid 2729 | . . . 4 ⊢ (LDual‘𝑈) = (LDual‘𝑈) | |
| 8 | eqid 2729 | . . . 4 ⊢ (LSubSp‘(LDual‘𝑈)) = (LSubSp‘(LDual‘𝑈)) | |
| 9 | mapdunirn.c | . . . 4 ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} | |
| 10 | mapdunirn.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mapdrn 41636 | . . 3 ⊢ (𝜑 → ran 𝑀 = ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶)) |
| 12 | 11 | unieqd 4880 | . 2 ⊢ (𝜑 → ∪ ran 𝑀 = ∪ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶)) |
| 13 | uniin 4891 | . . . 4 ⊢ ∪ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶) ⊆ (∪ (LSubSp‘(LDual‘𝑈)) ∩ ∪ 𝒫 𝐶) | |
| 14 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘(LDual‘𝑈)) = (Base‘(LDual‘𝑈)) | |
| 15 | 1, 4, 10 | dvhlmod 41097 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 16 | 7, 15 | lduallmod 39139 | . . . . . . . 8 ⊢ (𝜑 → (LDual‘𝑈) ∈ LMod) |
| 17 | 14, 8, 16 | lssuni 20877 | . . . . . . 7 ⊢ (𝜑 → ∪ (LSubSp‘(LDual‘𝑈)) = (Base‘(LDual‘𝑈))) |
| 18 | 5, 7, 14, 15 | ldualvbase 39112 | . . . . . . 7 ⊢ (𝜑 → (Base‘(LDual‘𝑈)) = 𝐹) |
| 19 | 17, 18 | eqtrd 2764 | . . . . . 6 ⊢ (𝜑 → ∪ (LSubSp‘(LDual‘𝑈)) = 𝐹) |
| 20 | unipw 5405 | . . . . . . 7 ⊢ ∪ 𝒫 𝐶 = 𝐶 | |
| 21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∪ 𝒫 𝐶 = 𝐶) |
| 22 | 19, 21 | ineq12d 4180 | . . . . 5 ⊢ (𝜑 → (∪ (LSubSp‘(LDual‘𝑈)) ∩ ∪ 𝒫 𝐶) = (𝐹 ∩ 𝐶)) |
| 23 | ssrab2 4039 | . . . . . . . 8 ⊢ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ⊆ 𝐹 | |
| 24 | 9, 23 | eqsstri 3990 | . . . . . . 7 ⊢ 𝐶 ⊆ 𝐹 |
| 25 | sseqin2 4182 | . . . . . . 7 ⊢ (𝐶 ⊆ 𝐹 ↔ (𝐹 ∩ 𝐶) = 𝐶) | |
| 26 | 24, 25 | mpbi 230 | . . . . . 6 ⊢ (𝐹 ∩ 𝐶) = 𝐶 |
| 27 | 26 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐹 ∩ 𝐶) = 𝐶) |
| 28 | 22, 27 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → (∪ (LSubSp‘(LDual‘𝑈)) ∩ ∪ 𝒫 𝐶) = 𝐶) |
| 29 | 13, 28 | sseqtrid 3986 | . . 3 ⊢ (𝜑 → ∪ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶) ⊆ 𝐶) |
| 30 | 1, 4, 2, 5, 6, 7, 8, 9, 10 | lclkr 41520 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (LSubSp‘(LDual‘𝑈))) |
| 31 | 5 | fvexi 6854 | . . . . . . . 8 ⊢ 𝐹 ∈ V |
| 32 | 9, 31 | rabex2 5291 | . . . . . . 7 ⊢ 𝐶 ∈ V |
| 33 | 32 | pwid 4581 | . . . . . 6 ⊢ 𝐶 ∈ 𝒫 𝐶 |
| 34 | 33 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐶) |
| 35 | 30, 34 | elind 4159 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶)) |
| 36 | elssuni 4897 | . . . 4 ⊢ (𝐶 ∈ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶) → 𝐶 ⊆ ∪ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶)) | |
| 37 | 35, 36 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ ∪ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶)) |
| 38 | 29, 37 | eqssd 3961 | . 2 ⊢ (𝜑 → ∪ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶) = 𝐶) |
| 39 | 12, 38 | eqtrd 2764 | 1 ⊢ (𝜑 → ∪ ran 𝑀 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 ∩ cin 3910 ⊆ wss 3911 𝒫 cpw 4559 ∪ cuni 4867 ran crn 5632 ‘cfv 6499 Basecbs 17155 LModclmod 20798 LSubSpclss 20869 LFnlclfn 39043 LKerclk 39071 LDualcld 39109 HLchlt 39336 LHypclh 39971 DVecHcdvh 41065 ocHcoch 41334 mapdcmpd 41611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-riotaBAD 38939 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-0g 17380 df-mre 17523 df-mrc 17524 df-acs 17526 df-proset 18235 df-poset 18254 df-plt 18269 df-lub 18285 df-glb 18286 df-join 18287 df-meet 18288 df-p0 18364 df-p1 18365 df-lat 18373 df-clat 18440 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-grp 18850 df-minusg 18851 df-sbg 18852 df-subg 19037 df-cntz 19231 df-oppg 19260 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-nzr 20433 df-rlreg 20614 df-domn 20615 df-drng 20651 df-lmod 20800 df-lss 20870 df-lsp 20910 df-lvec 21042 df-lsatoms 38962 df-lshyp 38963 df-lcv 39005 df-lfl 39044 df-lkr 39072 df-ldual 39110 df-oposet 39162 df-ol 39164 df-oml 39165 df-covers 39252 df-ats 39253 df-atl 39284 df-cvlat 39308 df-hlat 39337 df-llines 39485 df-lplanes 39486 df-lvols 39487 df-lines 39488 df-psubsp 39490 df-pmap 39491 df-padd 39783 df-lhyp 39975 df-laut 39976 df-ldil 40091 df-ltrn 40092 df-trl 40146 df-tgrp 40730 df-tendo 40742 df-edring 40744 df-dveca 40990 df-disoa 41016 df-dvech 41066 df-dib 41126 df-dic 41160 df-dih 41216 df-doch 41335 df-djh 41382 df-mapd 41612 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |