Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdunirnN | Structured version Visualization version GIF version |
Description: Union of the range of the map defined by df-mapd 39886. (Contributed by NM, 13-Mar-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdrn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdrn.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
mapdrn.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdrn.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdrn.f | ⊢ 𝐹 = (LFnl‘𝑈) |
mapdrn.l | ⊢ 𝐿 = (LKer‘𝑈) |
mapdunirn.c | ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} |
mapdunirn.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
mapdunirnN | ⊢ (𝜑 → ∪ ran 𝑀 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdrn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdrn.o | . . . 4 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
3 | mapdrn.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
4 | mapdrn.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | mapdrn.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | mapdrn.l | . . . 4 ⊢ 𝐿 = (LKer‘𝑈) | |
7 | eqid 2736 | . . . 4 ⊢ (LDual‘𝑈) = (LDual‘𝑈) | |
8 | eqid 2736 | . . . 4 ⊢ (LSubSp‘(LDual‘𝑈)) = (LSubSp‘(LDual‘𝑈)) | |
9 | mapdunirn.c | . . . 4 ⊢ 𝐶 = {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} | |
10 | mapdunirn.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mapdrn 39910 | . . 3 ⊢ (𝜑 → ran 𝑀 = ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶)) |
12 | 11 | unieqd 4865 | . 2 ⊢ (𝜑 → ∪ ran 𝑀 = ∪ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶)) |
13 | uniin 4878 | . . . 4 ⊢ ∪ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶) ⊆ (∪ (LSubSp‘(LDual‘𝑈)) ∩ ∪ 𝒫 𝐶) | |
14 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘(LDual‘𝑈)) = (Base‘(LDual‘𝑈)) | |
15 | 1, 4, 10 | dvhlmod 39371 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LMod) |
16 | 7, 15 | lduallmod 37413 | . . . . . . . 8 ⊢ (𝜑 → (LDual‘𝑈) ∈ LMod) |
17 | 14, 8, 16 | lssuni 20299 | . . . . . . 7 ⊢ (𝜑 → ∪ (LSubSp‘(LDual‘𝑈)) = (Base‘(LDual‘𝑈))) |
18 | 5, 7, 14, 15 | ldualvbase 37386 | . . . . . . 7 ⊢ (𝜑 → (Base‘(LDual‘𝑈)) = 𝐹) |
19 | 17, 18 | eqtrd 2776 | . . . . . 6 ⊢ (𝜑 → ∪ (LSubSp‘(LDual‘𝑈)) = 𝐹) |
20 | unipw 5390 | . . . . . . 7 ⊢ ∪ 𝒫 𝐶 = 𝐶 | |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ∪ 𝒫 𝐶 = 𝐶) |
22 | 19, 21 | ineq12d 4159 | . . . . 5 ⊢ (𝜑 → (∪ (LSubSp‘(LDual‘𝑈)) ∩ ∪ 𝒫 𝐶) = (𝐹 ∩ 𝐶)) |
23 | ssrab2 4024 | . . . . . . . 8 ⊢ {𝑔 ∈ 𝐹 ∣ (𝑂‘(𝑂‘(𝐿‘𝑔))) = (𝐿‘𝑔)} ⊆ 𝐹 | |
24 | 9, 23 | eqsstri 3965 | . . . . . . 7 ⊢ 𝐶 ⊆ 𝐹 |
25 | sseqin2 4161 | . . . . . . 7 ⊢ (𝐶 ⊆ 𝐹 ↔ (𝐹 ∩ 𝐶) = 𝐶) | |
26 | 24, 25 | mpbi 229 | . . . . . 6 ⊢ (𝐹 ∩ 𝐶) = 𝐶 |
27 | 26 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐹 ∩ 𝐶) = 𝐶) |
28 | 22, 27 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → (∪ (LSubSp‘(LDual‘𝑈)) ∩ ∪ 𝒫 𝐶) = 𝐶) |
29 | 13, 28 | sseqtrid 3983 | . . 3 ⊢ (𝜑 → ∪ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶) ⊆ 𝐶) |
30 | 1, 4, 2, 5, 6, 7, 8, 9, 10 | lclkr 39794 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (LSubSp‘(LDual‘𝑈))) |
31 | 5 | fvexi 6833 | . . . . . . . 8 ⊢ 𝐹 ∈ V |
32 | 9, 31 | rabex2 5275 | . . . . . . 7 ⊢ 𝐶 ∈ V |
33 | 32 | pwid 4568 | . . . . . 6 ⊢ 𝐶 ∈ 𝒫 𝐶 |
34 | 33 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝐶) |
35 | 30, 34 | elind 4140 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶)) |
36 | elssuni 4884 | . . . 4 ⊢ (𝐶 ∈ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶) → 𝐶 ⊆ ∪ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶)) | |
37 | 35, 36 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ ∪ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶)) |
38 | 29, 37 | eqssd 3948 | . 2 ⊢ (𝜑 → ∪ ((LSubSp‘(LDual‘𝑈)) ∩ 𝒫 𝐶) = 𝐶) |
39 | 12, 38 | eqtrd 2776 | 1 ⊢ (𝜑 → ∪ ran 𝑀 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {crab 3403 ∩ cin 3896 ⊆ wss 3897 𝒫 cpw 4546 ∪ cuni 4851 ran crn 5615 ‘cfv 6473 Basecbs 17001 LModclmod 20221 LSubSpclss 20291 LFnlclfn 37317 LKerclk 37345 LDualcld 37383 HLchlt 37610 LHypclh 38245 DVecHcdvh 39339 ocHcoch 39608 mapdcmpd 39885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-riotaBAD 37213 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-of 7587 df-om 7773 df-1st 7891 df-2nd 7892 df-tpos 8104 df-undef 8151 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-mulr 17065 df-sca 17067 df-vsca 17068 df-0g 17241 df-mre 17384 df-mrc 17385 df-acs 17387 df-proset 18102 df-poset 18120 df-plt 18137 df-lub 18153 df-glb 18154 df-join 18155 df-meet 18156 df-p0 18232 df-p1 18233 df-lat 18239 df-clat 18306 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-submnd 18520 df-grp 18668 df-minusg 18669 df-sbg 18670 df-subg 18840 df-cntz 19011 df-oppg 19038 df-lsm 19329 df-cmn 19475 df-abl 19476 df-mgp 19808 df-ur 19825 df-ring 19872 df-oppr 19949 df-dvdsr 19970 df-unit 19971 df-invr 20001 df-dvr 20012 df-drng 20087 df-lmod 20223 df-lss 20292 df-lsp 20332 df-lvec 20463 df-lsatoms 37236 df-lshyp 37237 df-lcv 37279 df-lfl 37318 df-lkr 37346 df-ldual 37384 df-oposet 37436 df-ol 37438 df-oml 37439 df-covers 37526 df-ats 37527 df-atl 37558 df-cvlat 37582 df-hlat 37611 df-llines 37759 df-lplanes 37760 df-lvols 37761 df-lines 37762 df-psubsp 37764 df-pmap 37765 df-padd 38057 df-lhyp 38249 df-laut 38250 df-ldil 38365 df-ltrn 38366 df-trl 38420 df-tgrp 39004 df-tendo 39016 df-edring 39018 df-dveca 39264 df-disoa 39290 df-dvech 39340 df-dib 39400 df-dic 39434 df-dih 39490 df-doch 39609 df-djh 39656 df-mapd 39886 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |