Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intubeu Structured version   Visualization version   GIF version

Theorem intubeu 48656
Description: Existential uniqueness of the least upper bound. (Contributed by Zhi Wang, 28-Sep-2024.)
Assertion
Ref Expression
intubeu (𝐶𝐵 → ((𝐴𝐶 ∧ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦)) ↔ 𝐶 = {𝑥𝐵𝐴𝑥}))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem intubeu
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ssint 4988 . . . . . . 7 (𝐶 {𝑥𝐵𝐴𝑥} ↔ ∀𝑦 ∈ {𝑥𝐵𝐴𝑥}𝐶𝑦)
2 sseq2 4035 . . . . . . . 8 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
32ralrab 3715 . . . . . . 7 (∀𝑦 ∈ {𝑥𝐵𝐴𝑥}𝐶𝑦 ↔ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦))
41, 3bitri 275 . . . . . 6 (𝐶 {𝑥𝐵𝐴𝑥} ↔ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦))
54biimpri 228 . . . . 5 (∀𝑦𝐵 (𝐴𝑦𝐶𝑦) → 𝐶 {𝑥𝐵𝐴𝑥})
65adantl 481 . . . 4 (((𝐶𝐵𝐴𝐶) ∧ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦)) → 𝐶 {𝑥𝐵𝐴𝑥})
7 sseq2 4035 . . . . . . 7 (𝑧 = 𝐶 → (𝐴𝑧𝐴𝐶))
8 simpll 766 . . . . . . 7 (((𝐶𝐵𝐴𝐶) ∧ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦)) → 𝐶𝐵)
9 simplr 768 . . . . . . 7 (((𝐶𝐵𝐴𝐶) ∧ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦)) → 𝐴𝐶)
107, 8, 9elrabd 3710 . . . . . 6 (((𝐶𝐵𝐴𝐶) ∧ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦)) → 𝐶 ∈ {𝑧𝐵𝐴𝑧})
11 sseq2 4035 . . . . . . 7 (𝑧 = 𝑥 → (𝐴𝑧𝐴𝑥))
1211cbvrabv 3454 . . . . . 6 {𝑧𝐵𝐴𝑧} = {𝑥𝐵𝐴𝑥}
1310, 12eleqtrdi 2854 . . . . 5 (((𝐶𝐵𝐴𝐶) ∧ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦)) → 𝐶 ∈ {𝑥𝐵𝐴𝑥})
14 intss1 4987 . . . . 5 (𝐶 ∈ {𝑥𝐵𝐴𝑥} → {𝑥𝐵𝐴𝑥} ⊆ 𝐶)
1513, 14syl 17 . . . 4 (((𝐶𝐵𝐴𝐶) ∧ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦)) → {𝑥𝐵𝐴𝑥} ⊆ 𝐶)
166, 15eqssd 4026 . . 3 (((𝐶𝐵𝐴𝐶) ∧ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦)) → 𝐶 = {𝑥𝐵𝐴𝑥})
1716expl 457 . 2 (𝐶𝐵 → ((𝐴𝐶 ∧ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦)) → 𝐶 = {𝑥𝐵𝐴𝑥}))
18 ssintub 4990 . . . 4 𝐴 {𝑥𝐵𝐴𝑥}
19 sseq2 4035 . . . 4 (𝐶 = {𝑥𝐵𝐴𝑥} → (𝐴𝐶𝐴 {𝑥𝐵𝐴𝑥}))
2018, 19mpbiri 258 . . 3 (𝐶 = {𝑥𝐵𝐴𝑥} → 𝐴𝐶)
21 eqimss 4067 . . . 4 (𝐶 = {𝑥𝐵𝐴𝑥} → 𝐶 {𝑥𝐵𝐴𝑥})
2221, 4sylib 218 . . 3 (𝐶 = {𝑥𝐵𝐴𝑥} → ∀𝑦𝐵 (𝐴𝑦𝐶𝑦))
2320, 22jca 511 . 2 (𝐶 = {𝑥𝐵𝐴𝑥} → (𝐴𝐶 ∧ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦)))
2417, 23impbid1 225 1 (𝐶𝐵 → ((𝐴𝐶 ∧ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦)) ↔ 𝐶 = {𝑥𝐵𝐴𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  wss 3976   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-ss 3993  df-int 4971
This theorem is referenced by:  ipolubdm  48659  ipolub  48660
  Copyright terms: Public domain W3C validator