Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipoglb Structured version   Visualization version   GIF version

Theorem ipoglb 48995
Description: The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with 𝑆 ∈ dom 𝐺.) Could be significantly shortened if posglbdg 18338 is in quantified form. mrelatglb 18485 could potentially be shortened using this. See mrelatglbALT 49000. (Contributed by Zhi Wang, 29-Sep-2024.)
Hypotheses
Ref Expression
ipolub.i 𝐼 = (toInc‘𝐹)
ipolub.f (𝜑𝐹𝑉)
ipolub.s (𝜑𝑆𝐹)
ipoglb.g (𝜑𝐺 = (glb‘𝐼))
ipoglbdm.t (𝜑𝑇 = {𝑥𝐹𝑥 𝑆})
ipoglb.t (𝜑𝑇𝐹)
Assertion
Ref Expression
ipoglb (𝜑 → (𝐺𝑆) = 𝑇)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem ipoglb
Dummy variables 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (le‘𝐼) = (le‘𝐼)
2 ipolub.f . . 3 (𝜑𝐹𝑉)
3 ipolub.i . . . 4 𝐼 = (toInc‘𝐹)
43ipobas 18456 . . 3 (𝐹𝑉𝐹 = (Base‘𝐼))
52, 4syl 17 . 2 (𝜑𝐹 = (Base‘𝐼))
6 ipoglb.g . 2 (𝜑𝐺 = (glb‘𝐼))
73ipopos 18461 . . 3 𝐼 ∈ Poset
87a1i 11 . 2 (𝜑𝐼 ∈ Poset)
9 ipolub.s . 2 (𝜑𝑆𝐹)
10 ipoglb.t . 2 (𝜑𝑇𝐹)
11 breq2 5099 . . 3 (𝑦 = 𝑣 → (𝑇(le‘𝐼)𝑦𝑇(le‘𝐼)𝑣))
12 ipoglbdm.t . . . . . . 7 (𝜑𝑇 = {𝑥𝐹𝑥 𝑆})
13 unilbeu 48989 . . . . . . . 8 (𝑇𝐹 → ((𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)) ↔ 𝑇 = {𝑥𝐹𝑥 𝑆}))
1413biimpar 477 . . . . . . 7 ((𝑇𝐹𝑇 = {𝑥𝐹𝑥 𝑆}) → (𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)))
1510, 12, 14syl2anc 584 . . . . . 6 (𝜑 → (𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)))
163, 2, 9, 1ipoglblem 48993 . . . . . . 7 ((𝜑𝑇𝐹) → ((𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)) ↔ (∀𝑦𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇))))
1710, 16mpdan 687 . . . . . 6 (𝜑 → ((𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)) ↔ (∀𝑦𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇))))
1815, 17mpbid 232 . . . . 5 (𝜑 → (∀𝑦𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇)))
1918simpld 494 . . . 4 (𝜑 → ∀𝑦𝑆 𝑇(le‘𝐼)𝑦)
2019adantr 480 . . 3 ((𝜑𝑣𝑆) → ∀𝑦𝑆 𝑇(le‘𝐼)𝑦)
21 simpr 484 . . 3 ((𝜑𝑣𝑆) → 𝑣𝑆)
2211, 20, 21rspcdva 3580 . 2 ((𝜑𝑣𝑆) → 𝑇(le‘𝐼)𝑣)
23 breq1 5098 . . . . . . 7 (𝑧 = 𝑤 → (𝑧(le‘𝐼)𝑦𝑤(le‘𝐼)𝑦))
2423ralbidv 3152 . . . . . 6 (𝑧 = 𝑤 → (∀𝑦𝑆 𝑧(le‘𝐼)𝑦 ↔ ∀𝑦𝑆 𝑤(le‘𝐼)𝑦))
25 breq2 5099 . . . . . . 7 (𝑦 = 𝑣 → (𝑤(le‘𝐼)𝑦𝑤(le‘𝐼)𝑣))
2625cbvralvw 3207 . . . . . 6 (∀𝑦𝑆 𝑤(le‘𝐼)𝑦 ↔ ∀𝑣𝑆 𝑤(le‘𝐼)𝑣)
2724, 26bitrdi 287 . . . . 5 (𝑧 = 𝑤 → (∀𝑦𝑆 𝑧(le‘𝐼)𝑦 ↔ ∀𝑣𝑆 𝑤(le‘𝐼)𝑣))
28 breq1 5098 . . . . 5 (𝑧 = 𝑤 → (𝑧(le‘𝐼)𝑇𝑤(le‘𝐼)𝑇))
2927, 28imbi12d 344 . . . 4 (𝑧 = 𝑤 → ((∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇) ↔ (∀𝑣𝑆 𝑤(le‘𝐼)𝑣𝑤(le‘𝐼)𝑇)))
3018simprd 495 . . . . 5 (𝜑 → ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇))
3130adantr 480 . . . 4 ((𝜑𝑤𝐹) → ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇))
32 simpr 484 . . . 4 ((𝜑𝑤𝐹) → 𝑤𝐹)
3329, 31, 32rspcdva 3580 . . 3 ((𝜑𝑤𝐹) → (∀𝑣𝑆 𝑤(le‘𝐼)𝑣𝑤(le‘𝐼)𝑇))
34333impia 1117 . 2 ((𝜑𝑤𝐹 ∧ ∀𝑣𝑆 𝑤(le‘𝐼)𝑣) → 𝑤(le‘𝐼)𝑇)
351, 5, 6, 8, 9, 10, 22, 34posglbdg 18338 1 (𝜑 → (𝐺𝑆) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  wss 3905   cuni 4861   cint 4899   class class class wbr 5095  cfv 6486  Basecbs 17139  lecple 17187  Posetcpo 18232  glbcglb 18235  toInccipo 18452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-tset 17199  df-ple 17200  df-ocomp 17201  df-odu 18212  df-proset 18219  df-poset 18238  df-lub 18269  df-glb 18270  df-ipo 18453
This theorem is referenced by:  ipoglb0  48998  mrelatglbALT  49000  toplatglb  49005  toplatmeet  49007
  Copyright terms: Public domain W3C validator