| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ipoglb | Structured version Visualization version GIF version | ||
| Description: The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with 𝑆 ∈ dom 𝐺.) Could be significantly shortened if posglbdg 18327 is in quantified form. mrelatglb 18474 could potentially be shortened using this. See mrelatglbALT 49157. (Contributed by Zhi Wang, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
| ipoglb.g | ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) |
| ipoglbdm.t | ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| ipoglb.t | ⊢ (𝜑 → 𝑇 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ipoglb | ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ (le‘𝐼) = (le‘𝐼) | |
| 2 | ipolub.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | ipolub.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐹) | |
| 4 | 3 | ipobas 18445 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
| 6 | ipoglb.g | . 2 ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) | |
| 7 | 3 | ipopos 18450 | . . 3 ⊢ 𝐼 ∈ Poset |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 𝐼 ∈ Poset) |
| 9 | ipolub.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
| 10 | ipoglb.t | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝐹) | |
| 11 | breq2 5099 | . . 3 ⊢ (𝑦 = 𝑣 → (𝑇(le‘𝐼)𝑦 ↔ 𝑇(le‘𝐼)𝑣)) | |
| 12 | ipoglbdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) | |
| 13 | unilbeu 49146 | . . . . . . . 8 ⊢ (𝑇 ∈ 𝐹 → ((𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)) ↔ 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆})) | |
| 14 | 13 | biimpar 477 | . . . . . . 7 ⊢ ((𝑇 ∈ 𝐹 ∧ 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) → (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 15 | 10, 12, 14 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 16 | 3, 2, 9, 1 | ipoglblem 49150 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → ((𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)) ↔ (∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇)))) |
| 17 | 10, 16 | mpdan 687 | . . . . . 6 ⊢ (𝜑 → ((𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)) ↔ (∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇)))) |
| 18 | 15, 17 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇))) |
| 19 | 18 | simpld 494 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦) |
| 21 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑣 ∈ 𝑆) | |
| 22 | 11, 20, 21 | rspcdva 3574 | . 2 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑇(le‘𝐼)𝑣) |
| 23 | breq1 5098 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (𝑧(le‘𝐼)𝑦 ↔ 𝑤(le‘𝐼)𝑦)) | |
| 24 | 23 | ralbidv 3156 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑤(le‘𝐼)𝑦)) |
| 25 | breq2 5099 | . . . . . . 7 ⊢ (𝑦 = 𝑣 → (𝑤(le‘𝐼)𝑦 ↔ 𝑤(le‘𝐼)𝑣)) | |
| 26 | 25 | cbvralvw 3211 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑆 𝑤(le‘𝐼)𝑦 ↔ ∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣) |
| 27 | 24, 26 | bitrdi 287 | . . . . 5 ⊢ (𝑧 = 𝑤 → (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 ↔ ∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣)) |
| 28 | breq1 5098 | . . . . 5 ⊢ (𝑧 = 𝑤 → (𝑧(le‘𝐼)𝑇 ↔ 𝑤(le‘𝐼)𝑇)) | |
| 29 | 27, 28 | imbi12d 344 | . . . 4 ⊢ (𝑧 = 𝑤 → ((∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇) ↔ (∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑤(le‘𝐼)𝑇))) |
| 30 | 18 | simprd 495 | . . . . 5 ⊢ (𝜑 → ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇)) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇)) |
| 32 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → 𝑤 ∈ 𝐹) | |
| 33 | 29, 31, 32 | rspcdva 3574 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → (∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑤(le‘𝐼)𝑇)) |
| 34 | 33 | 3impia 1117 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹 ∧ ∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣) → 𝑤(le‘𝐼)𝑇) |
| 35 | 1, 5, 6, 8, 9, 10, 22, 34 | posglbdg 18327 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 ⊆ wss 3898 ∪ cuni 4860 ∩ cint 4899 class class class wbr 5095 ‘cfv 6489 Basecbs 17127 lecple 17175 Posetcpo 18221 glbcglb 18224 toInccipo 18441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-tset 17187 df-ple 17188 df-ocomp 17189 df-odu 18201 df-proset 18208 df-poset 18227 df-lub 18258 df-glb 18259 df-ipo 18442 |
| This theorem is referenced by: ipoglb0 49155 mrelatglbALT 49157 toplatglb 49162 toplatmeet 49164 |
| Copyright terms: Public domain | W3C validator |