| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ipoglb | Structured version Visualization version GIF version | ||
| Description: The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with 𝑆 ∈ dom 𝐺.) Could be significantly shortened if posglbdg 18412 is in quantified form. mrelatglb 18557 could potentially be shortened using this. See mrelatglbALT 48864. (Contributed by Zhi Wang, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
| ipoglb.g | ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) |
| ipoglbdm.t | ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| ipoglb.t | ⊢ (𝜑 → 𝑇 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ipoglb | ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . 2 ⊢ (le‘𝐼) = (le‘𝐼) | |
| 2 | ipolub.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | ipolub.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐹) | |
| 4 | 3 | ipobas 18528 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
| 6 | ipoglb.g | . 2 ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) | |
| 7 | 3 | ipopos 18533 | . . 3 ⊢ 𝐼 ∈ Poset |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 𝐼 ∈ Poset) |
| 9 | ipolub.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
| 10 | ipoglb.t | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝐹) | |
| 11 | breq2 5121 | . . 3 ⊢ (𝑦 = 𝑣 → (𝑇(le‘𝐼)𝑦 ↔ 𝑇(le‘𝐼)𝑣)) | |
| 12 | ipoglbdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) | |
| 13 | unilbeu 48853 | . . . . . . . 8 ⊢ (𝑇 ∈ 𝐹 → ((𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)) ↔ 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆})) | |
| 14 | 13 | biimpar 477 | . . . . . . 7 ⊢ ((𝑇 ∈ 𝐹 ∧ 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) → (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 15 | 10, 12, 14 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 16 | 3, 2, 9, 1 | ipoglblem 48857 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → ((𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)) ↔ (∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇)))) |
| 17 | 10, 16 | mpdan 687 | . . . . . 6 ⊢ (𝜑 → ((𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)) ↔ (∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇)))) |
| 18 | 15, 17 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇))) |
| 19 | 18 | simpld 494 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦) |
| 21 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑣 ∈ 𝑆) | |
| 22 | 11, 20, 21 | rspcdva 3600 | . 2 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑇(le‘𝐼)𝑣) |
| 23 | breq1 5120 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (𝑧(le‘𝐼)𝑦 ↔ 𝑤(le‘𝐼)𝑦)) | |
| 24 | 23 | ralbidv 3161 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑤(le‘𝐼)𝑦)) |
| 25 | breq2 5121 | . . . . . . 7 ⊢ (𝑦 = 𝑣 → (𝑤(le‘𝐼)𝑦 ↔ 𝑤(le‘𝐼)𝑣)) | |
| 26 | 25 | cbvralvw 3218 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑆 𝑤(le‘𝐼)𝑦 ↔ ∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣) |
| 27 | 24, 26 | bitrdi 287 | . . . . 5 ⊢ (𝑧 = 𝑤 → (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 ↔ ∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣)) |
| 28 | breq1 5120 | . . . . 5 ⊢ (𝑧 = 𝑤 → (𝑧(le‘𝐼)𝑇 ↔ 𝑤(le‘𝐼)𝑇)) | |
| 29 | 27, 28 | imbi12d 344 | . . . 4 ⊢ (𝑧 = 𝑤 → ((∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇) ↔ (∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑤(le‘𝐼)𝑇))) |
| 30 | 18 | simprd 495 | . . . . 5 ⊢ (𝜑 → ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇)) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇)) |
| 32 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → 𝑤 ∈ 𝐹) | |
| 33 | 29, 31, 32 | rspcdva 3600 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → (∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑤(le‘𝐼)𝑇)) |
| 34 | 33 | 3impia 1117 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹 ∧ ∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣) → 𝑤(le‘𝐼)𝑇) |
| 35 | 1, 5, 6, 8, 9, 10, 22, 34 | posglbdg 18412 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3413 ⊆ wss 3924 ∪ cuni 4881 ∩ cint 4920 class class class wbr 5117 ‘cfv 6528 Basecbs 17215 lecple 17265 Posetcpo 18306 glbcglb 18309 toInccipo 18524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-uz 12846 df-fz 13515 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-tset 17277 df-ple 17278 df-ocomp 17279 df-odu 18286 df-proset 18293 df-poset 18312 df-lub 18343 df-glb 18344 df-ipo 18525 |
| This theorem is referenced by: ipoglb0 48862 mrelatglbALT 48864 toplatglb 48869 toplatmeet 48871 |
| Copyright terms: Public domain | W3C validator |