Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. 2
β’
(leβπΌ) =
(leβπΌ) |
2 | | ipolub.f |
. . 3
β’ (π β πΉ β π) |
3 | | ipolub.i |
. . . 4
β’ πΌ = (toIncβπΉ) |
4 | 3 | ipobas 18488 |
. . 3
β’ (πΉ β π β πΉ = (BaseβπΌ)) |
5 | 2, 4 | syl 17 |
. 2
β’ (π β πΉ = (BaseβπΌ)) |
6 | | ipoglb.g |
. 2
β’ (π β πΊ = (glbβπΌ)) |
7 | 3 | ipopos 18493 |
. . 3
β’ πΌ β Poset |
8 | 7 | a1i 11 |
. 2
β’ (π β πΌ β Poset) |
9 | | ipolub.s |
. 2
β’ (π β π β πΉ) |
10 | | ipoglb.t |
. 2
β’ (π β π β πΉ) |
11 | | breq2 5152 |
. . 3
β’ (π¦ = π£ β (π(leβπΌ)π¦ β π(leβπΌ)π£)) |
12 | | ipoglbdm.t |
. . . . . . 7
β’ (π β π = βͺ {π₯ β πΉ β£ π₯ β β© π}) |
13 | | unilbeu 47698 |
. . . . . . . 8
β’ (π β πΉ β ((π β β© π β§ βπ§ β πΉ (π§ β β© π β π§ β π)) β π = βͺ {π₯ β πΉ β£ π₯ β β© π})) |
14 | 13 | biimpar 478 |
. . . . . . 7
β’ ((π β πΉ β§ π = βͺ {π₯ β πΉ β£ π₯ β β© π}) β (π β β© π β§ βπ§ β πΉ (π§ β β© π β π§ β π))) |
15 | 10, 12, 14 | syl2anc 584 |
. . . . . 6
β’ (π β (π β β© π β§ βπ§ β πΉ (π§ β β© π β π§ β π))) |
16 | 3, 2, 9, 1 | ipoglblem 47702 |
. . . . . . 7
β’ ((π β§ π β πΉ) β ((π β β© π β§ βπ§ β πΉ (π§ β β© π β π§ β π)) β (βπ¦ β π π(leβπΌ)π¦ β§ βπ§ β πΉ (βπ¦ β π π§(leβπΌ)π¦ β π§(leβπΌ)π)))) |
17 | 10, 16 | mpdan 685 |
. . . . . 6
β’ (π β ((π β β© π β§ βπ§ β πΉ (π§ β β© π β π§ β π)) β (βπ¦ β π π(leβπΌ)π¦ β§ βπ§ β πΉ (βπ¦ β π π§(leβπΌ)π¦ β π§(leβπΌ)π)))) |
18 | 15, 17 | mpbid 231 |
. . . . 5
β’ (π β (βπ¦ β π π(leβπΌ)π¦ β§ βπ§ β πΉ (βπ¦ β π π§(leβπΌ)π¦ β π§(leβπΌ)π))) |
19 | 18 | simpld 495 |
. . . 4
β’ (π β βπ¦ β π π(leβπΌ)π¦) |
20 | 19 | adantr 481 |
. . 3
β’ ((π β§ π£ β π) β βπ¦ β π π(leβπΌ)π¦) |
21 | | simpr 485 |
. . 3
β’ ((π β§ π£ β π) β π£ β π) |
22 | 11, 20, 21 | rspcdva 3613 |
. 2
β’ ((π β§ π£ β π) β π(leβπΌ)π£) |
23 | | breq1 5151 |
. . . . . . 7
β’ (π§ = π€ β (π§(leβπΌ)π¦ β π€(leβπΌ)π¦)) |
24 | 23 | ralbidv 3177 |
. . . . . 6
β’ (π§ = π€ β (βπ¦ β π π§(leβπΌ)π¦ β βπ¦ β π π€(leβπΌ)π¦)) |
25 | | breq2 5152 |
. . . . . . 7
β’ (π¦ = π£ β (π€(leβπΌ)π¦ β π€(leβπΌ)π£)) |
26 | 25 | cbvralvw 3234 |
. . . . . 6
β’
(βπ¦ β
π π€(leβπΌ)π¦ β βπ£ β π π€(leβπΌ)π£) |
27 | 24, 26 | bitrdi 286 |
. . . . 5
β’ (π§ = π€ β (βπ¦ β π π§(leβπΌ)π¦ β βπ£ β π π€(leβπΌ)π£)) |
28 | | breq1 5151 |
. . . . 5
β’ (π§ = π€ β (π§(leβπΌ)π β π€(leβπΌ)π)) |
29 | 27, 28 | imbi12d 344 |
. . . 4
β’ (π§ = π€ β ((βπ¦ β π π§(leβπΌ)π¦ β π§(leβπΌ)π) β (βπ£ β π π€(leβπΌ)π£ β π€(leβπΌ)π))) |
30 | 18 | simprd 496 |
. . . . 5
β’ (π β βπ§ β πΉ (βπ¦ β π π§(leβπΌ)π¦ β π§(leβπΌ)π)) |
31 | 30 | adantr 481 |
. . . 4
β’ ((π β§ π€ β πΉ) β βπ§ β πΉ (βπ¦ β π π§(leβπΌ)π¦ β π§(leβπΌ)π)) |
32 | | simpr 485 |
. . . 4
β’ ((π β§ π€ β πΉ) β π€ β πΉ) |
33 | 29, 31, 32 | rspcdva 3613 |
. . 3
β’ ((π β§ π€ β πΉ) β (βπ£ β π π€(leβπΌ)π£ β π€(leβπΌ)π)) |
34 | 33 | 3impia 1117 |
. 2
β’ ((π β§ π€ β πΉ β§ βπ£ β π π€(leβπΌ)π£) β π€(leβπΌ)π) |
35 | 1, 5, 6, 8, 9, 10,
22, 34 | posglbdg 18372 |
1
β’ (π β (πΊβπ) = π) |