| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ipoglb | Structured version Visualization version GIF version | ||
| Description: The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with 𝑆 ∈ dom 𝐺.) Could be significantly shortened if posglbdg 18350 is in quantified form. mrelatglb 18495 could potentially be shortened using this. See mrelatglbALT 48957. (Contributed by Zhi Wang, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
| ipoglb.g | ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) |
| ipoglbdm.t | ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) |
| ipoglb.t | ⊢ (𝜑 → 𝑇 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ipoglb | ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (le‘𝐼) = (le‘𝐼) | |
| 2 | ipolub.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | ipolub.i | . . . 4 ⊢ 𝐼 = (toInc‘𝐹) | |
| 4 | 3 | ipobas 18466 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 = (Base‘𝐼)) |
| 5 | 2, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐼)) |
| 6 | ipoglb.g | . 2 ⊢ (𝜑 → 𝐺 = (glb‘𝐼)) | |
| 7 | 3 | ipopos 18471 | . . 3 ⊢ 𝐼 ∈ Poset |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 𝐼 ∈ Poset) |
| 9 | ipolub.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
| 10 | ipoglb.t | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝐹) | |
| 11 | breq2 5106 | . . 3 ⊢ (𝑦 = 𝑣 → (𝑇(le‘𝐼)𝑦 ↔ 𝑇(le‘𝐼)𝑣)) | |
| 12 | ipoglbdm.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) | |
| 13 | unilbeu 48946 | . . . . . . . 8 ⊢ (𝑇 ∈ 𝐹 → ((𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)) ↔ 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆})) | |
| 14 | 13 | biimpar 477 | . . . . . . 7 ⊢ ((𝑇 ∈ 𝐹 ∧ 𝑇 = ∪ {𝑥 ∈ 𝐹 ∣ 𝑥 ⊆ ∩ 𝑆}) → (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 15 | 10, 12, 14 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇))) |
| 16 | 3, 2, 9, 1 | ipoglblem 48950 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑇 ∈ 𝐹) → ((𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)) ↔ (∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇)))) |
| 17 | 10, 16 | mpdan 687 | . . . . . 6 ⊢ (𝜑 → ((𝑇 ⊆ ∩ 𝑆 ∧ ∀𝑧 ∈ 𝐹 (𝑧 ⊆ ∩ 𝑆 → 𝑧 ⊆ 𝑇)) ↔ (∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇)))) |
| 18 | 15, 17 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇))) |
| 19 | 18 | simpld 494 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦) |
| 20 | 19 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → ∀𝑦 ∈ 𝑆 𝑇(le‘𝐼)𝑦) |
| 21 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑣 ∈ 𝑆) | |
| 22 | 11, 20, 21 | rspcdva 3586 | . 2 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑆) → 𝑇(le‘𝐼)𝑣) |
| 23 | breq1 5105 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (𝑧(le‘𝐼)𝑦 ↔ 𝑤(le‘𝐼)𝑦)) | |
| 24 | 23 | ralbidv 3156 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑤(le‘𝐼)𝑦)) |
| 25 | breq2 5106 | . . . . . . 7 ⊢ (𝑦 = 𝑣 → (𝑤(le‘𝐼)𝑦 ↔ 𝑤(le‘𝐼)𝑣)) | |
| 26 | 25 | cbvralvw 3213 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑆 𝑤(le‘𝐼)𝑦 ↔ ∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣) |
| 27 | 24, 26 | bitrdi 287 | . . . . 5 ⊢ (𝑧 = 𝑤 → (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 ↔ ∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣)) |
| 28 | breq1 5105 | . . . . 5 ⊢ (𝑧 = 𝑤 → (𝑧(le‘𝐼)𝑇 ↔ 𝑤(le‘𝐼)𝑇)) | |
| 29 | 27, 28 | imbi12d 344 | . . . 4 ⊢ (𝑧 = 𝑤 → ((∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇) ↔ (∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑤(le‘𝐼)𝑇))) |
| 30 | 18 | simprd 495 | . . . . 5 ⊢ (𝜑 → ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇)) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑧(le‘𝐼)𝑦 → 𝑧(le‘𝐼)𝑇)) |
| 32 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → 𝑤 ∈ 𝐹) | |
| 33 | 29, 31, 32 | rspcdva 3586 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹) → (∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣 → 𝑤(le‘𝐼)𝑇)) |
| 34 | 33 | 3impia 1117 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐹 ∧ ∀𝑣 ∈ 𝑆 𝑤(le‘𝐼)𝑣) → 𝑤(le‘𝐼)𝑇) |
| 35 | 1, 5, 6, 8, 9, 10, 22, 34 | posglbdg 18350 | 1 ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3402 ⊆ wss 3911 ∪ cuni 4867 ∩ cint 4906 class class class wbr 5102 ‘cfv 6499 Basecbs 17155 lecple 17203 Posetcpo 18244 glbcglb 18247 toInccipo 18462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-tset 17215 df-ple 17216 df-ocomp 17217 df-odu 18224 df-proset 18231 df-poset 18250 df-lub 18281 df-glb 18282 df-ipo 18463 |
| This theorem is referenced by: ipoglb0 48955 mrelatglbALT 48957 toplatglb 48962 toplatmeet 48964 |
| Copyright terms: Public domain | W3C validator |