Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipoglb Structured version   Visualization version   GIF version

Theorem ipoglb 48952
Description: The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with 𝑆 ∈ dom 𝐺.) Could be significantly shortened if posglbdg 18350 is in quantified form. mrelatglb 18495 could potentially be shortened using this. See mrelatglbALT 48957. (Contributed by Zhi Wang, 29-Sep-2024.)
Hypotheses
Ref Expression
ipolub.i 𝐼 = (toInc‘𝐹)
ipolub.f (𝜑𝐹𝑉)
ipolub.s (𝜑𝑆𝐹)
ipoglb.g (𝜑𝐺 = (glb‘𝐼))
ipoglbdm.t (𝜑𝑇 = {𝑥𝐹𝑥 𝑆})
ipoglb.t (𝜑𝑇𝐹)
Assertion
Ref Expression
ipoglb (𝜑 → (𝐺𝑆) = 𝑇)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem ipoglb
Dummy variables 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (le‘𝐼) = (le‘𝐼)
2 ipolub.f . . 3 (𝜑𝐹𝑉)
3 ipolub.i . . . 4 𝐼 = (toInc‘𝐹)
43ipobas 18466 . . 3 (𝐹𝑉𝐹 = (Base‘𝐼))
52, 4syl 17 . 2 (𝜑𝐹 = (Base‘𝐼))
6 ipoglb.g . 2 (𝜑𝐺 = (glb‘𝐼))
73ipopos 18471 . . 3 𝐼 ∈ Poset
87a1i 11 . 2 (𝜑𝐼 ∈ Poset)
9 ipolub.s . 2 (𝜑𝑆𝐹)
10 ipoglb.t . 2 (𝜑𝑇𝐹)
11 breq2 5106 . . 3 (𝑦 = 𝑣 → (𝑇(le‘𝐼)𝑦𝑇(le‘𝐼)𝑣))
12 ipoglbdm.t . . . . . . 7 (𝜑𝑇 = {𝑥𝐹𝑥 𝑆})
13 unilbeu 48946 . . . . . . . 8 (𝑇𝐹 → ((𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)) ↔ 𝑇 = {𝑥𝐹𝑥 𝑆}))
1413biimpar 477 . . . . . . 7 ((𝑇𝐹𝑇 = {𝑥𝐹𝑥 𝑆}) → (𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)))
1510, 12, 14syl2anc 584 . . . . . 6 (𝜑 → (𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)))
163, 2, 9, 1ipoglblem 48950 . . . . . . 7 ((𝜑𝑇𝐹) → ((𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)) ↔ (∀𝑦𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇))))
1710, 16mpdan 687 . . . . . 6 (𝜑 → ((𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)) ↔ (∀𝑦𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇))))
1815, 17mpbid 232 . . . . 5 (𝜑 → (∀𝑦𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇)))
1918simpld 494 . . . 4 (𝜑 → ∀𝑦𝑆 𝑇(le‘𝐼)𝑦)
2019adantr 480 . . 3 ((𝜑𝑣𝑆) → ∀𝑦𝑆 𝑇(le‘𝐼)𝑦)
21 simpr 484 . . 3 ((𝜑𝑣𝑆) → 𝑣𝑆)
2211, 20, 21rspcdva 3586 . 2 ((𝜑𝑣𝑆) → 𝑇(le‘𝐼)𝑣)
23 breq1 5105 . . . . . . 7 (𝑧 = 𝑤 → (𝑧(le‘𝐼)𝑦𝑤(le‘𝐼)𝑦))
2423ralbidv 3156 . . . . . 6 (𝑧 = 𝑤 → (∀𝑦𝑆 𝑧(le‘𝐼)𝑦 ↔ ∀𝑦𝑆 𝑤(le‘𝐼)𝑦))
25 breq2 5106 . . . . . . 7 (𝑦 = 𝑣 → (𝑤(le‘𝐼)𝑦𝑤(le‘𝐼)𝑣))
2625cbvralvw 3213 . . . . . 6 (∀𝑦𝑆 𝑤(le‘𝐼)𝑦 ↔ ∀𝑣𝑆 𝑤(le‘𝐼)𝑣)
2724, 26bitrdi 287 . . . . 5 (𝑧 = 𝑤 → (∀𝑦𝑆 𝑧(le‘𝐼)𝑦 ↔ ∀𝑣𝑆 𝑤(le‘𝐼)𝑣))
28 breq1 5105 . . . . 5 (𝑧 = 𝑤 → (𝑧(le‘𝐼)𝑇𝑤(le‘𝐼)𝑇))
2927, 28imbi12d 344 . . . 4 (𝑧 = 𝑤 → ((∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇) ↔ (∀𝑣𝑆 𝑤(le‘𝐼)𝑣𝑤(le‘𝐼)𝑇)))
3018simprd 495 . . . . 5 (𝜑 → ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇))
3130adantr 480 . . . 4 ((𝜑𝑤𝐹) → ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇))
32 simpr 484 . . . 4 ((𝜑𝑤𝐹) → 𝑤𝐹)
3329, 31, 32rspcdva 3586 . . 3 ((𝜑𝑤𝐹) → (∀𝑣𝑆 𝑤(le‘𝐼)𝑣𝑤(le‘𝐼)𝑇))
34333impia 1117 . 2 ((𝜑𝑤𝐹 ∧ ∀𝑣𝑆 𝑤(le‘𝐼)𝑣) → 𝑤(le‘𝐼)𝑇)
351, 5, 6, 8, 9, 10, 22, 34posglbdg 18350 1 (𝜑 → (𝐺𝑆) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  wss 3911   cuni 4867   cint 4906   class class class wbr 5102  cfv 6499  Basecbs 17155  lecple 17203  Posetcpo 18244  glbcglb 18247  toInccipo 18462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-tset 17215  df-ple 17216  df-ocomp 17217  df-odu 18224  df-proset 18231  df-poset 18250  df-lub 18281  df-glb 18282  df-ipo 18463
This theorem is referenced by:  ipoglb0  48955  mrelatglbALT  48957  toplatglb  48962  toplatmeet  48964
  Copyright terms: Public domain W3C validator