Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipoglb Structured version   Visualization version   GIF version

Theorem ipoglb 48895
Description: The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with 𝑆 ∈ dom 𝐺.) Could be significantly shortened if posglbdg 18461 is in quantified form. mrelatglb 18606 could potentially be shortened using this. See mrelatglbALT 48900. (Contributed by Zhi Wang, 29-Sep-2024.)
Hypotheses
Ref Expression
ipolub.i 𝐼 = (toInc‘𝐹)
ipolub.f (𝜑𝐹𝑉)
ipolub.s (𝜑𝑆𝐹)
ipoglb.g (𝜑𝐺 = (glb‘𝐼))
ipoglbdm.t (𝜑𝑇 = {𝑥𝐹𝑥 𝑆})
ipoglb.t (𝜑𝑇𝐹)
Assertion
Ref Expression
ipoglb (𝜑 → (𝐺𝑆) = 𝑇)
Distinct variable groups:   𝑥,𝐹   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem ipoglb
Dummy variables 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . 2 (le‘𝐼) = (le‘𝐼)
2 ipolub.f . . 3 (𝜑𝐹𝑉)
3 ipolub.i . . . 4 𝐼 = (toInc‘𝐹)
43ipobas 18577 . . 3 (𝐹𝑉𝐹 = (Base‘𝐼))
52, 4syl 17 . 2 (𝜑𝐹 = (Base‘𝐼))
6 ipoglb.g . 2 (𝜑𝐺 = (glb‘𝐼))
73ipopos 18582 . . 3 𝐼 ∈ Poset
87a1i 11 . 2 (𝜑𝐼 ∈ Poset)
9 ipolub.s . 2 (𝜑𝑆𝐹)
10 ipoglb.t . 2 (𝜑𝑇𝐹)
11 breq2 5146 . . 3 (𝑦 = 𝑣 → (𝑇(le‘𝐼)𝑦𝑇(le‘𝐼)𝑣))
12 ipoglbdm.t . . . . . . 7 (𝜑𝑇 = {𝑥𝐹𝑥 𝑆})
13 unilbeu 48889 . . . . . . . 8 (𝑇𝐹 → ((𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)) ↔ 𝑇 = {𝑥𝐹𝑥 𝑆}))
1413biimpar 477 . . . . . . 7 ((𝑇𝐹𝑇 = {𝑥𝐹𝑥 𝑆}) → (𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)))
1510, 12, 14syl2anc 584 . . . . . 6 (𝜑 → (𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)))
163, 2, 9, 1ipoglblem 48893 . . . . . . 7 ((𝜑𝑇𝐹) → ((𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)) ↔ (∀𝑦𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇))))
1710, 16mpdan 687 . . . . . 6 (𝜑 → ((𝑇 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑇)) ↔ (∀𝑦𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇))))
1815, 17mpbid 232 . . . . 5 (𝜑 → (∀𝑦𝑆 𝑇(le‘𝐼)𝑦 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇)))
1918simpld 494 . . . 4 (𝜑 → ∀𝑦𝑆 𝑇(le‘𝐼)𝑦)
2019adantr 480 . . 3 ((𝜑𝑣𝑆) → ∀𝑦𝑆 𝑇(le‘𝐼)𝑦)
21 simpr 484 . . 3 ((𝜑𝑣𝑆) → 𝑣𝑆)
2211, 20, 21rspcdva 3622 . 2 ((𝜑𝑣𝑆) → 𝑇(le‘𝐼)𝑣)
23 breq1 5145 . . . . . . 7 (𝑧 = 𝑤 → (𝑧(le‘𝐼)𝑦𝑤(le‘𝐼)𝑦))
2423ralbidv 3177 . . . . . 6 (𝑧 = 𝑤 → (∀𝑦𝑆 𝑧(le‘𝐼)𝑦 ↔ ∀𝑦𝑆 𝑤(le‘𝐼)𝑦))
25 breq2 5146 . . . . . . 7 (𝑦 = 𝑣 → (𝑤(le‘𝐼)𝑦𝑤(le‘𝐼)𝑣))
2625cbvralvw 3236 . . . . . 6 (∀𝑦𝑆 𝑤(le‘𝐼)𝑦 ↔ ∀𝑣𝑆 𝑤(le‘𝐼)𝑣)
2724, 26bitrdi 287 . . . . 5 (𝑧 = 𝑤 → (∀𝑦𝑆 𝑧(le‘𝐼)𝑦 ↔ ∀𝑣𝑆 𝑤(le‘𝐼)𝑣))
28 breq1 5145 . . . . 5 (𝑧 = 𝑤 → (𝑧(le‘𝐼)𝑇𝑤(le‘𝐼)𝑇))
2927, 28imbi12d 344 . . . 4 (𝑧 = 𝑤 → ((∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇) ↔ (∀𝑣𝑆 𝑤(le‘𝐼)𝑣𝑤(le‘𝐼)𝑇)))
3018simprd 495 . . . . 5 (𝜑 → ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇))
3130adantr 480 . . . 4 ((𝜑𝑤𝐹) → ∀𝑧𝐹 (∀𝑦𝑆 𝑧(le‘𝐼)𝑦𝑧(le‘𝐼)𝑇))
32 simpr 484 . . . 4 ((𝜑𝑤𝐹) → 𝑤𝐹)
3329, 31, 32rspcdva 3622 . . 3 ((𝜑𝑤𝐹) → (∀𝑣𝑆 𝑤(le‘𝐼)𝑣𝑤(le‘𝐼)𝑇))
34333impia 1117 . 2 ((𝜑𝑤𝐹 ∧ ∀𝑣𝑆 𝑤(le‘𝐼)𝑣) → 𝑤(le‘𝐼)𝑇)
351, 5, 6, 8, 9, 10, 22, 34posglbdg 18461 1 (𝜑 → (𝐺𝑆) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  {crab 3435  wss 3950   cuni 4906   cint 4945   class class class wbr 5142  cfv 6560  Basecbs 17248  lecple 17305  Posetcpo 18354  glbcglb 18357  toInccipo 18573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-tset 17317  df-ple 17318  df-ocomp 17319  df-odu 18333  df-proset 18341  df-poset 18360  df-lub 18392  df-glb 18393  df-ipo 18574
This theorem is referenced by:  ipoglb0  48898  mrelatglbALT  48900  toplatglb  48905  toplatmeet  48907
  Copyright terms: Public domain W3C validator