Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ipolublem Structured version   Visualization version   GIF version

Theorem ipolublem 48927
Description: Lemma for ipolubdm 48928 and ipolub 48929. (Contributed by Zhi Wang, 28-Sep-2024.)
Hypotheses
Ref Expression
ipolub.i 𝐼 = (toInc‘𝐹)
ipolub.f (𝜑𝐹𝑉)
ipolub.s (𝜑𝑆𝐹)
ipolublem.l = (le‘𝐼)
Assertion
Ref Expression
ipolublem ((𝜑𝑋𝐹) → (( 𝑆𝑋 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑋𝑧)) ↔ (∀𝑦𝑆 𝑦 𝑋 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑦 𝑧𝑋 𝑧))))
Distinct variable groups:   𝑦,𝐹,𝑧   𝑦,𝑆   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑧)   𝐼(𝑦,𝑧)   (𝑦,𝑧)   𝑉(𝑦,𝑧)

Proof of Theorem ipolublem
StepHypRef Expression
1 unissb 4920 . . 3 ( 𝑆𝑋 ↔ ∀𝑦𝑆 𝑦𝑋)
2 ipolub.f . . . . . 6 (𝜑𝐹𝑉)
32ad2antrr 726 . . . . 5 (((𝜑𝑋𝐹) ∧ 𝑦𝑆) → 𝐹𝑉)
4 ipolub.s . . . . . . 7 (𝜑𝑆𝐹)
54ad2antrr 726 . . . . . 6 (((𝜑𝑋𝐹) ∧ 𝑦𝑆) → 𝑆𝐹)
6 simpr 484 . . . . . 6 (((𝜑𝑋𝐹) ∧ 𝑦𝑆) → 𝑦𝑆)
75, 6sseldd 3964 . . . . 5 (((𝜑𝑋𝐹) ∧ 𝑦𝑆) → 𝑦𝐹)
8 simplr 768 . . . . 5 (((𝜑𝑋𝐹) ∧ 𝑦𝑆) → 𝑋𝐹)
9 ipolub.i . . . . . 6 𝐼 = (toInc‘𝐹)
10 ipolublem.l . . . . . 6 = (le‘𝐼)
119, 10ipole 18549 . . . . 5 ((𝐹𝑉𝑦𝐹𝑋𝐹) → (𝑦 𝑋𝑦𝑋))
123, 7, 8, 11syl3anc 1373 . . . 4 (((𝜑𝑋𝐹) ∧ 𝑦𝑆) → (𝑦 𝑋𝑦𝑋))
1312ralbidva 3162 . . 3 ((𝜑𝑋𝐹) → (∀𝑦𝑆 𝑦 𝑋 ↔ ∀𝑦𝑆 𝑦𝑋))
141, 13bitr4id 290 . 2 ((𝜑𝑋𝐹) → ( 𝑆𝑋 ↔ ∀𝑦𝑆 𝑦 𝑋))
15 unissb 4920 . . . . 5 ( 𝑆𝑧 ↔ ∀𝑦𝑆 𝑦𝑧)
163adantlr 715 . . . . . . 7 ((((𝜑𝑋𝐹) ∧ 𝑧𝐹) ∧ 𝑦𝑆) → 𝐹𝑉)
177adantlr 715 . . . . . . 7 ((((𝜑𝑋𝐹) ∧ 𝑧𝐹) ∧ 𝑦𝑆) → 𝑦𝐹)
18 simplr 768 . . . . . . 7 ((((𝜑𝑋𝐹) ∧ 𝑧𝐹) ∧ 𝑦𝑆) → 𝑧𝐹)
199, 10ipole 18549 . . . . . . 7 ((𝐹𝑉𝑦𝐹𝑧𝐹) → (𝑦 𝑧𝑦𝑧))
2016, 17, 18, 19syl3anc 1373 . . . . . 6 ((((𝜑𝑋𝐹) ∧ 𝑧𝐹) ∧ 𝑦𝑆) → (𝑦 𝑧𝑦𝑧))
2120ralbidva 3162 . . . . 5 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → (∀𝑦𝑆 𝑦 𝑧 ↔ ∀𝑦𝑆 𝑦𝑧))
2215, 21bitr4id 290 . . . 4 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → ( 𝑆𝑧 ↔ ∀𝑦𝑆 𝑦 𝑧))
232ad2antrr 726 . . . . . 6 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → 𝐹𝑉)
24 simplr 768 . . . . . 6 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → 𝑋𝐹)
25 simpr 484 . . . . . 6 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → 𝑧𝐹)
269, 10ipole 18549 . . . . . 6 ((𝐹𝑉𝑋𝐹𝑧𝐹) → (𝑋 𝑧𝑋𝑧))
2723, 24, 25, 26syl3anc 1373 . . . . 5 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → (𝑋 𝑧𝑋𝑧))
2827bicomd 223 . . . 4 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → (𝑋𝑧𝑋 𝑧))
2922, 28imbi12d 344 . . 3 (((𝜑𝑋𝐹) ∧ 𝑧𝐹) → (( 𝑆𝑧𝑋𝑧) ↔ (∀𝑦𝑆 𝑦 𝑧𝑋 𝑧)))
3029ralbidva 3162 . 2 ((𝜑𝑋𝐹) → (∀𝑧𝐹 ( 𝑆𝑧𝑋𝑧) ↔ ∀𝑧𝐹 (∀𝑦𝑆 𝑦 𝑧𝑋 𝑧)))
3114, 30anbi12d 632 1 ((𝜑𝑋𝐹) → (( 𝑆𝑋 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑋𝑧)) ↔ (∀𝑦𝑆 𝑦 𝑋 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑦 𝑧𝑋 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wss 3931   cuni 4888   class class class wbr 5124  cfv 6536  lecple 17283  toInccipo 18542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-tset 17295  df-ple 17296  df-ocomp 17297  df-ipo 18543
This theorem is referenced by:  ipolubdm  48928  ipolub  48929
  Copyright terms: Public domain W3C validator