| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ipolublem | Structured version Visualization version GIF version | ||
| Description: Lemma for ipolubdm 48928 and ipolub 48929. (Contributed by Zhi Wang, 28-Sep-2024.) |
| Ref | Expression |
|---|---|
| ipolub.i | ⊢ 𝐼 = (toInc‘𝐹) |
| ipolub.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| ipolub.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐹) |
| ipolublem.l | ⊢ ≤ = (le‘𝐼) |
| Ref | Expression |
|---|---|
| ipolublem | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑋 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑋 ⊆ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑋 ≤ 𝑧)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unissb 4920 | . . 3 ⊢ (∪ 𝑆 ⊆ 𝑋 ↔ ∀𝑦 ∈ 𝑆 𝑦 ⊆ 𝑋) | |
| 2 | ipolub.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | 2 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝐹 ∈ 𝑉) |
| 4 | ipolub.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ 𝐹) | |
| 5 | 4 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑆 ⊆ 𝐹) |
| 6 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 7 | 5, 6 | sseldd 3964 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐹) |
| 8 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑋 ∈ 𝐹) | |
| 9 | ipolub.i | . . . . . 6 ⊢ 𝐼 = (toInc‘𝐹) | |
| 10 | ipolublem.l | . . . . . 6 ⊢ ≤ = (le‘𝐼) | |
| 11 | 9, 10 | ipole 18549 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑦 ∈ 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝑦 ≤ 𝑋 ↔ 𝑦 ⊆ 𝑋)) |
| 12 | 3, 7, 8, 11 | syl3anc 1373 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → (𝑦 ≤ 𝑋 ↔ 𝑦 ⊆ 𝑋)) |
| 13 | 12 | ralbidva 3162 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 ↔ ∀𝑦 ∈ 𝑆 𝑦 ⊆ 𝑋)) |
| 14 | 1, 13 | bitr4id 290 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → (∪ 𝑆 ⊆ 𝑋 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋)) |
| 15 | unissb 4920 | . . . . 5 ⊢ (∪ 𝑆 ⊆ 𝑧 ↔ ∀𝑦 ∈ 𝑆 𝑦 ⊆ 𝑧) | |
| 16 | 3 | adantlr 715 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝐹 ∈ 𝑉) |
| 17 | 7 | adantlr 715 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝐹) |
| 18 | simplr 768 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → 𝑧 ∈ 𝐹) | |
| 19 | 9, 10 | ipole 18549 | . . . . . . 7 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹) → (𝑦 ≤ 𝑧 ↔ 𝑦 ⊆ 𝑧)) |
| 20 | 16, 17, 18, 19 | syl3anc 1373 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) ∧ 𝑦 ∈ 𝑆) → (𝑦 ≤ 𝑧 ↔ 𝑦 ⊆ 𝑧)) |
| 21 | 20 | ralbidva 3162 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 𝑦 ⊆ 𝑧)) |
| 22 | 15, 21 | bitr4id 290 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → (∪ 𝑆 ⊆ 𝑧 ↔ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧)) |
| 23 | 2 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → 𝐹 ∈ 𝑉) |
| 24 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → 𝑋 ∈ 𝐹) | |
| 25 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → 𝑧 ∈ 𝐹) | |
| 26 | 9, 10 | ipole 18549 | . . . . . 6 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹) → (𝑋 ≤ 𝑧 ↔ 𝑋 ⊆ 𝑧)) |
| 27 | 23, 24, 25, 26 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → (𝑋 ≤ 𝑧 ↔ 𝑋 ⊆ 𝑧)) |
| 28 | 27 | bicomd 223 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → (𝑋 ⊆ 𝑧 ↔ 𝑋 ≤ 𝑧)) |
| 29 | 22, 28 | imbi12d 344 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐹) ∧ 𝑧 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑧 → 𝑋 ⊆ 𝑧) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑋 ≤ 𝑧))) |
| 30 | 29 | ralbidva 3162 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → (∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑋 ⊆ 𝑧) ↔ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑋 ≤ 𝑧))) |
| 31 | 14, 30 | anbi12d 632 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐹) → ((∪ 𝑆 ⊆ 𝑋 ∧ ∀𝑧 ∈ 𝐹 (∪ 𝑆 ⊆ 𝑧 → 𝑋 ⊆ 𝑧)) ↔ (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 ∧ ∀𝑧 ∈ 𝐹 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑋 ≤ 𝑧)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⊆ wss 3931 ∪ cuni 4888 class class class wbr 5124 ‘cfv 6536 lecple 17283 toInccipo 18542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-tset 17295 df-ple 17296 df-ocomp 17297 df-ipo 18543 |
| This theorem is referenced by: ipolubdm 48928 ipolub 48929 |
| Copyright terms: Public domain | W3C validator |