| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmrnssfld | Structured version Visualization version GIF version | ||
| Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
| Ref | Expression |
|---|---|
| dmrnssfld | ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 5847 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 3 | 1 | prid1 4716 | . . . . . 6 ⊢ 𝑥 ∈ {𝑥, 𝑦} |
| 4 | vex 3441 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 5 | 1, 4 | uniop 5460 | . . . . . . . . 9 ⊢ ∪ 〈𝑥, 𝑦〉 = {𝑥, 𝑦} |
| 6 | 1, 4 | uniopel 5461 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴) |
| 7 | 5, 6 | eqeltrrid 2838 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → {𝑥, 𝑦} ∈ ∪ 𝐴) |
| 8 | elssuni 4891 | . . . . . . . 8 ⊢ ({𝑥, 𝑦} ∈ ∪ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) | |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) |
| 10 | 9 | sseld 3929 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥 ∈ ∪ ∪ 𝐴)) |
| 11 | 3, 10 | mpi 20 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
| 12 | 11 | exlimiv 1931 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
| 13 | 2, 12 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
| 14 | 13 | ssriv 3934 | . 2 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
| 15 | 4 | elrn2 5838 | . . . 4 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
| 16 | 4 | prid2 4717 | . . . . . 6 ⊢ 𝑦 ∈ {𝑥, 𝑦} |
| 17 | 9 | sseld 3929 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦 ∈ ∪ ∪ 𝐴)) |
| 18 | 16, 17 | mpi 20 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
| 19 | 18 | exlimiv 1931 | . . . 4 ⊢ (∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
| 20 | 15, 19 | sylbi 217 | . . 3 ⊢ (𝑦 ∈ ran 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
| 21 | 20 | ssriv 3934 | . 2 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
| 22 | 14, 21 | unssi 4140 | 1 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1780 ∈ wcel 2113 ∪ cun 3896 ⊆ wss 3898 {cpr 4579 〈cop 4583 ∪ cuni 4860 dom cdm 5621 ran crn 5622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: relfld 6229 relcoi2 6231 dmexg 7839 rnexg 7840 wundm 10628 wunrn 10629 relexpdm 14954 relexprn 14958 relexpfld 14960 psdmrn 18483 dirdm 18510 dirge 18513 tailf 36442 filnetlem3 36447 dmwf 45085 rnwf 45086 |
| Copyright terms: Public domain | W3C validator |