| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmrnssfld | Structured version Visualization version GIF version | ||
| Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
| Ref | Expression |
|---|---|
| dmrnssfld | ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 5886 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
| 3 | 1 | prid1 4743 | . . . . . 6 ⊢ 𝑥 ∈ {𝑥, 𝑦} |
| 4 | vex 3468 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 5 | 1, 4 | uniop 5495 | . . . . . . . . 9 ⊢ ∪ 〈𝑥, 𝑦〉 = {𝑥, 𝑦} |
| 6 | 1, 4 | uniopel 5496 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴) |
| 7 | 5, 6 | eqeltrrid 2840 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → {𝑥, 𝑦} ∈ ∪ 𝐴) |
| 8 | elssuni 4918 | . . . . . . . 8 ⊢ ({𝑥, 𝑦} ∈ ∪ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) | |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) |
| 10 | 9 | sseld 3962 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥 ∈ ∪ ∪ 𝐴)) |
| 11 | 3, 10 | mpi 20 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
| 12 | 11 | exlimiv 1930 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
| 13 | 2, 12 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
| 14 | 13 | ssriv 3967 | . 2 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
| 15 | 4 | elrn2 5877 | . . . 4 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴) |
| 16 | 4 | prid2 4744 | . . . . . 6 ⊢ 𝑦 ∈ {𝑥, 𝑦} |
| 17 | 9 | sseld 3962 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦 ∈ ∪ ∪ 𝐴)) |
| 18 | 16, 17 | mpi 20 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
| 19 | 18 | exlimiv 1930 | . . . 4 ⊢ (∃𝑥〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
| 20 | 15, 19 | sylbi 217 | . . 3 ⊢ (𝑦 ∈ ran 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
| 21 | 20 | ssriv 3967 | . 2 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
| 22 | 14, 21 | unssi 4171 | 1 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 ∈ wcel 2109 ∪ cun 3929 ⊆ wss 3931 {cpr 4608 〈cop 4612 ∪ cuni 4888 dom cdm 5659 ran crn 5660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: relfld 6269 relcoi2 6271 dmexg 7902 rnexg 7903 wundm 10747 wunrn 10748 relexpdm 15067 relexprn 15071 relexpfld 15073 psdmrn 18588 dirdm 18615 dirge 18618 tailf 36398 filnetlem3 36403 dmwf 44957 rnwf 44958 |
| Copyright terms: Public domain | W3C validator |