![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmrnssfld | Structured version Visualization version GIF version |
Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
Ref | Expression |
---|---|
dmrnssfld | ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3477 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm2 5902 | . . . 4 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
3 | 1 | prid1 4767 | . . . . . 6 ⊢ 𝑥 ∈ {𝑥, 𝑦} |
4 | vex 3477 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
5 | 1, 4 | uniop 5516 | . . . . . . . . 9 ⊢ ∪ ⟨𝑥, 𝑦⟩ = {𝑥, 𝑦} |
6 | 1, 4 | uniopel 5517 | . . . . . . . . 9 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ∪ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝐴) |
7 | 5, 6 | eqeltrrid 2837 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → {𝑥, 𝑦} ∈ ∪ 𝐴) |
8 | elssuni 4942 | . . . . . . . 8 ⊢ ({𝑥, 𝑦} ∈ ∪ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → {𝑥, 𝑦} ⊆ ∪ ∪ 𝐴) |
10 | 9 | sseld 3982 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥 ∈ ∪ ∪ 𝐴)) |
11 | 3, 10 | mpi 20 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
12 | 11 | exlimiv 1932 | . . . 4 ⊢ (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
13 | 2, 12 | sylbi 216 | . . 3 ⊢ (𝑥 ∈ dom 𝐴 → 𝑥 ∈ ∪ ∪ 𝐴) |
14 | 13 | ssriv 3987 | . 2 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
15 | 4 | elrn2 5893 | . . . 4 ⊢ (𝑦 ∈ ran 𝐴 ↔ ∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴) |
16 | 4 | prid2 4768 | . . . . . 6 ⊢ 𝑦 ∈ {𝑥, 𝑦} |
17 | 9 | sseld 3982 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦 ∈ ∪ ∪ 𝐴)) |
18 | 16, 17 | mpi 20 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
19 | 18 | exlimiv 1932 | . . . 4 ⊢ (∃𝑥⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
20 | 15, 19 | sylbi 216 | . . 3 ⊢ (𝑦 ∈ ran 𝐴 → 𝑦 ∈ ∪ ∪ 𝐴) |
21 | 20 | ssriv 3987 | . 2 ⊢ ran 𝐴 ⊆ ∪ ∪ 𝐴 |
22 | 14, 21 | unssi 4186 | 1 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1780 ∈ wcel 2105 ∪ cun 3947 ⊆ wss 3949 {cpr 4631 ⟨cop 4635 ∪ cuni 4909 dom cdm 5677 ran crn 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-cnv 5685 df-dm 5687 df-rn 5688 |
This theorem is referenced by: relfld 6275 relcoi2 6277 dmexg 7897 rnexg 7898 wundm 10726 wunrn 10727 relexpdm 14995 relexprn 14999 relexpfld 15001 psdmrn 18531 dirdm 18558 dirge 18561 tailf 35564 filnetlem3 35569 |
Copyright terms: Public domain | W3C validator |