MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmrnssfld Structured version   Visualization version   GIF version

Theorem dmrnssfld 5913
Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.)
Assertion
Ref Expression
dmrnssfld (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴

Proof of Theorem dmrnssfld
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . 5 𝑥 ∈ V
21eldm2 5841 . . . 4 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
31prid1 4715 . . . . . 6 𝑥 ∈ {𝑥, 𝑦}
4 vex 3440 . . . . . . . . . 10 𝑦 ∈ V
51, 4uniop 5455 . . . . . . . . 9 𝑥, 𝑦⟩ = {𝑥, 𝑦}
61, 4uniopel 5456 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥, 𝑦⟩ ∈ 𝐴)
75, 6eqeltrrid 2836 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → {𝑥, 𝑦} ∈ 𝐴)
8 elssuni 4889 . . . . . . . 8 ({𝑥, 𝑦} ∈ 𝐴 → {𝑥, 𝑦} ⊆ 𝐴)
97, 8syl 17 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → {𝑥, 𝑦} ⊆ 𝐴)
109sseld 3933 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 ∈ {𝑥, 𝑦} → 𝑥 𝐴))
113, 10mpi 20 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 𝐴)
1211exlimiv 1931 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴𝑥 𝐴)
132, 12sylbi 217 . . 3 (𝑥 ∈ dom 𝐴𝑥 𝐴)
1413ssriv 3938 . 2 dom 𝐴 𝐴
154elrn2 5832 . . . 4 (𝑦 ∈ ran 𝐴 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐴)
164prid2 4716 . . . . . 6 𝑦 ∈ {𝑥, 𝑦}
179sseld 3933 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑦 ∈ {𝑥, 𝑦} → 𝑦 𝐴))
1816, 17mpi 20 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 𝐴)
1918exlimiv 1931 . . . 4 (∃𝑥𝑥, 𝑦⟩ ∈ 𝐴𝑦 𝐴)
2015, 19sylbi 217 . . 3 (𝑦 ∈ ran 𝐴𝑦 𝐴)
2120ssriv 3938 . 2 ran 𝐴 𝐴
2214, 21unssi 4141 1 (dom 𝐴 ∪ ran 𝐴) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wex 1780  wcel 2111  cun 3900  wss 3902  {cpr 4578  cop 4582   cuni 4859  dom cdm 5616  ran crn 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-cnv 5624  df-dm 5626  df-rn 5627
This theorem is referenced by:  relfld  6222  relcoi2  6224  dmexg  7831  rnexg  7832  wundm  10619  wunrn  10620  relexpdm  14950  relexprn  14954  relexpfld  14956  psdmrn  18479  dirdm  18506  dirge  18509  tailf  36415  filnetlem3  36420  dmwf  45004  rnwf  45005
  Copyright terms: Public domain W3C validator