![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unielrel | Structured version Visualization version GIF version |
Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
unielrel | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∪ 𝐴 ∈ ∪ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrel 5460 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
2 | simpr 479 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
3 | vex 3417 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 3417 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | uniopel 5204 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝑅 → ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝑅) |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (〈𝑥, 𝑦〉 ∈ 𝑅 → ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝑅)) |
7 | eleq1 2894 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) | |
8 | unieq 4668 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 = ∪ 〈𝑥, 𝑦〉) | |
9 | 8 | eleq1d 2891 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (∪ 𝐴 ∈ ∪ 𝑅 ↔ ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝑅)) |
10 | 6, 7, 9 | 3imtr4d 286 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝑅 → ∪ 𝐴 ∈ ∪ 𝑅)) |
11 | 10 | exlimivv 2031 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝑅 → ∪ 𝐴 ∈ ∪ 𝑅)) |
12 | 1, 2, 11 | sylc 65 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∪ 𝐴 ∈ ∪ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∃wex 1878 ∈ wcel 2164 〈cop 4405 ∪ cuni 4660 Rel wrel 5351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-rex 3123 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-opab 4938 df-xp 5352 df-rel 5353 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |