![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unielrel | Structured version Visualization version GIF version |
Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
unielrel | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∪ 𝐴 ∈ ∪ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrel 5796 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) | |
2 | simpr 485 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
3 | vex 3478 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 3478 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | uniopel 5515 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ∪ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝑅) |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ∪ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝑅)) |
7 | eleq1 2821 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)) | |
8 | unieq 4918 | . . . . 5 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ∪ 𝐴 = ∪ ⟨𝑥, 𝑦⟩) | |
9 | 8 | eleq1d 2818 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (∪ 𝐴 ∈ ∪ 𝑅 ↔ ∪ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝑅)) |
10 | 6, 7, 9 | 3imtr4d 293 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ 𝑅 → ∪ 𝐴 ∈ ∪ 𝑅)) |
11 | 10 | exlimivv 1935 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ 𝑅 → ∪ 𝐴 ∈ ∪ 𝑅)) |
12 | 1, 2, 11 | sylc 65 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∪ 𝐴 ∈ ∪ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ⟨cop 4633 ∪ cuni 4907 Rel wrel 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-opab 5210 df-xp 5681 df-rel 5682 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |