MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unielrel Structured version   Visualization version   GIF version

Theorem unielrel 6250
Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
unielrel ((Rel 𝑅𝐴𝑅) → 𝐴 𝑅)

Proof of Theorem unielrel
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrel 5764 . 2 ((Rel 𝑅𝐴𝑅) → ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
2 simpr 484 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴𝑅)
3 vex 3454 . . . . . 6 𝑥 ∈ V
4 vex 3454 . . . . . 6 𝑦 ∈ V
53, 4uniopel 5479 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝑅𝑥, 𝑦⟩ ∈ 𝑅)
65a1i 11 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ 𝑅𝑥, 𝑦⟩ ∈ 𝑅))
7 eleq1 2817 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅))
8 unieq 4885 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 = 𝑥, 𝑦⟩)
98eleq1d 2814 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → ( 𝐴 𝑅𝑥, 𝑦⟩ ∈ 𝑅))
106, 7, 93imtr4d 294 . . 3 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴𝑅 𝐴 𝑅))
1110exlimivv 1932 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴𝑅 𝐴 𝑅))
121, 2, 11sylc 65 1 ((Rel 𝑅𝐴𝑅) → 𝐴 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  cop 4598   cuni 4874  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-opab 5173  df-xp 5647  df-rel 5648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator