![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unielrel | Structured version Visualization version GIF version |
Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
unielrel | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∪ 𝐴 ∈ ∪ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrel 5804 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) | |
2 | simpr 483 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
3 | vex 3477 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | vex 3477 | . . . . . 6 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | uniopel 5522 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ∪ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝑅) |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (⟨𝑥, 𝑦⟩ ∈ 𝑅 → ∪ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝑅)) |
7 | eleq1 2817 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)) | |
8 | unieq 4923 | . . . . 5 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → ∪ 𝐴 = ∪ ⟨𝑥, 𝑦⟩) | |
9 | 8 | eleq1d 2814 | . . . 4 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (∪ 𝐴 ∈ ∪ 𝑅 ↔ ∪ ⟨𝑥, 𝑦⟩ ∈ ∪ 𝑅)) |
10 | 6, 7, 9 | 3imtr4d 293 | . . 3 ⊢ (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ 𝑅 → ∪ 𝐴 ∈ ∪ 𝑅)) |
11 | 10 | exlimivv 1927 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ 𝑅 → ∪ 𝐴 ∈ ∪ 𝑅)) |
12 | 1, 2, 11 | sylc 65 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∪ 𝐴 ∈ ∪ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ⟨cop 4638 ∪ cuni 4912 Rel wrel 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-opab 5215 df-xp 5688 df-rel 5689 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |