| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unielrel | Structured version Visualization version GIF version | ||
| Description: The membership relation for a relation is inherited by class union. (Contributed by NM, 17-Sep-2006.) |
| Ref | Expression |
|---|---|
| unielrel | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∪ 𝐴 ∈ ∪ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrel 5761 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 2 | simpr 484 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
| 3 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | vex 3451 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | uniopel 5476 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ 𝑅 → ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝑅) |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (〈𝑥, 𝑦〉 ∈ 𝑅 → ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝑅)) |
| 7 | eleq1 2816 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅)) | |
| 8 | unieq 4882 | . . . . 5 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → ∪ 𝐴 = ∪ 〈𝑥, 𝑦〉) | |
| 9 | 8 | eleq1d 2813 | . . . 4 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (∪ 𝐴 ∈ ∪ 𝑅 ↔ ∪ 〈𝑥, 𝑦〉 ∈ ∪ 𝑅)) |
| 10 | 6, 7, 9 | 3imtr4d 294 | . . 3 ⊢ (𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝑅 → ∪ 𝐴 ∈ ∪ 𝑅)) |
| 11 | 10 | exlimivv 1932 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 → (𝐴 ∈ 𝑅 → ∪ 𝐴 ∈ ∪ 𝑅)) |
| 12 | 1, 2, 11 | sylc 65 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∪ 𝐴 ∈ ∪ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4595 ∪ cuni 4871 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |