MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2vsca Structured version   Visualization version   GIF version

Theorem cnmpt2vsca 23346
Description: Continuity of scalar multiplication; analogue of cnmpt22f 22826 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
cnmpt1vsca.t · = ( ·𝑠𝑊)
cnmpt1vsca.j 𝐽 = (TopOpen‘𝑊)
cnmpt1vsca.k 𝐾 = (TopOpen‘𝐹)
cnmpt1vsca.w (𝜑𝑊 ∈ TopMod)
cnmpt1vsca.l (𝜑𝐿 ∈ (TopOn‘𝑋))
cnmpt2vsca.m (𝜑𝑀 ∈ (TopOn‘𝑌))
cnmpt2vsca.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾))
cnmpt2vsca.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
Assertion
Ref Expression
cnmpt2vsca (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   · (𝑥,𝑦)   𝐿(𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem cnmpt2vsca
StepHypRef Expression
1 cnmpt1vsca.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑋))
2 cnmpt2vsca.m . . . . . . . . . 10 (𝜑𝑀 ∈ (TopOn‘𝑌))
3 txtopon 22742 . . . . . . . . . 10 ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ (TopOn‘𝑌)) → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)))
5 cnmpt1vsca.w . . . . . . . . . . 11 (𝜑𝑊 ∈ TopMod)
6 tlmtrg.f . . . . . . . . . . . 12 𝐹 = (Scalar‘𝑊)
76tlmscatps 23342 . . . . . . . . . . 11 (𝑊 ∈ TopMod → 𝐹 ∈ TopSp)
85, 7syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ TopSp)
9 eqid 2738 . . . . . . . . . . 11 (Base‘𝐹) = (Base‘𝐹)
10 cnmpt1vsca.k . . . . . . . . . . 11 𝐾 = (TopOpen‘𝐹)
119, 10istps 22083 . . . . . . . . . 10 (𝐹 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐹)))
128, 11sylib 217 . . . . . . . . 9 (𝜑𝐾 ∈ (TopOn‘(Base‘𝐹)))
13 cnmpt2vsca.a . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾))
14 cnf2 22400 . . . . . . . . 9 (((𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐹)) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐹))
154, 12, 13, 14syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐹))
16 eqid 2738 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1716fmpo 7908 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐹) ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐹))
1815, 17sylibr 233 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐹))
1918r19.21bi 3134 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 ∈ (Base‘𝐹))
2019r19.21bi 3134 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴 ∈ (Base‘𝐹))
21 tlmtps 23339 . . . . . . . . . . 11 (𝑊 ∈ TopMod → 𝑊 ∈ TopSp)
225, 21syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ TopSp)
23 eqid 2738 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
24 cnmpt1vsca.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝑊)
2523, 24istps 22083 . . . . . . . . . 10 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊)))
2622, 25sylib 217 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑊)))
27 cnmpt2vsca.b . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
28 cnf2 22400 . . . . . . . . 9 (((𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
294, 26, 27, 28syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
30 eqid 2738 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑥𝑋, 𝑦𝑌𝐵)
3130fmpo 7908 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝑊) ↔ (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
3229, 31sylibr 233 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝑊))
3332r19.21bi 3134 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 ∈ (Base‘𝑊))
3433r19.21bi 3134 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐵 ∈ (Base‘𝑊))
35 eqid 2738 . . . . . 6 ( ·sf𝑊) = ( ·sf𝑊)
36 cnmpt1vsca.t . . . . . 6 · = ( ·𝑠𝑊)
3723, 6, 9, 35, 36scafval 20142 . . . . 5 ((𝐴 ∈ (Base‘𝐹) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
3820, 34, 37syl2anc 584 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
39383impa 1109 . . 3 ((𝜑𝑥𝑋𝑦𝑌) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
4039mpoeq3dva 7352 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴( ·sf𝑊)𝐵)) = (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)))
4135, 24, 6, 10vscacn 23337 . . . 4 (𝑊 ∈ TopMod → ( ·sf𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
425, 41syl 17 . . 3 (𝜑 → ( ·sf𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
431, 2, 13, 27, 42cnmpt22f 22826 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴( ·sf𝑊)𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
4440, 43eqeltrrd 2840 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  TopOpenctopn 17132   ·sf cscaf 20124  TopOnctopon 22059  TopSpctps 22081   Cn ccn 22375   ×t ctx 22711  TopModctlm 23309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-topgen 17154  df-scaf 20126  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-tx 22713  df-tmd 23223  df-tgp 23224  df-trg 23311  df-tlm 23313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator