MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2vsca Structured version   Visualization version   GIF version

Theorem cnmpt2vsca 24082
Description: Continuity of scalar multiplication; analogue of cnmpt22f 23562 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
cnmpt1vsca.t · = ( ·𝑠𝑊)
cnmpt1vsca.j 𝐽 = (TopOpen‘𝑊)
cnmpt1vsca.k 𝐾 = (TopOpen‘𝐹)
cnmpt1vsca.w (𝜑𝑊 ∈ TopMod)
cnmpt1vsca.l (𝜑𝐿 ∈ (TopOn‘𝑋))
cnmpt2vsca.m (𝜑𝑀 ∈ (TopOn‘𝑌))
cnmpt2vsca.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾))
cnmpt2vsca.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
Assertion
Ref Expression
cnmpt2vsca (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   · (𝑥,𝑦)   𝐿(𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem cnmpt2vsca
StepHypRef Expression
1 cnmpt1vsca.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑋))
2 cnmpt2vsca.m . . . . . . . . . 10 (𝜑𝑀 ∈ (TopOn‘𝑌))
3 txtopon 23478 . . . . . . . . . 10 ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ (TopOn‘𝑌)) → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)))
5 cnmpt1vsca.w . . . . . . . . . . 11 (𝜑𝑊 ∈ TopMod)
6 tlmtrg.f . . . . . . . . . . . 12 𝐹 = (Scalar‘𝑊)
76tlmscatps 24078 . . . . . . . . . . 11 (𝑊 ∈ TopMod → 𝐹 ∈ TopSp)
85, 7syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ TopSp)
9 eqid 2729 . . . . . . . . . . 11 (Base‘𝐹) = (Base‘𝐹)
10 cnmpt1vsca.k . . . . . . . . . . 11 𝐾 = (TopOpen‘𝐹)
119, 10istps 22821 . . . . . . . . . 10 (𝐹 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐹)))
128, 11sylib 218 . . . . . . . . 9 (𝜑𝐾 ∈ (TopOn‘(Base‘𝐹)))
13 cnmpt2vsca.a . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾))
14 cnf2 23136 . . . . . . . . 9 (((𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐹)) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐹))
154, 12, 13, 14syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐹))
16 eqid 2729 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1716fmpo 8047 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐹) ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐹))
1815, 17sylibr 234 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐹))
1918r19.21bi 3229 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 ∈ (Base‘𝐹))
2019r19.21bi 3229 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴 ∈ (Base‘𝐹))
21 tlmtps 24075 . . . . . . . . . . 11 (𝑊 ∈ TopMod → 𝑊 ∈ TopSp)
225, 21syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ TopSp)
23 eqid 2729 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
24 cnmpt1vsca.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝑊)
2523, 24istps 22821 . . . . . . . . . 10 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊)))
2622, 25sylib 218 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑊)))
27 cnmpt2vsca.b . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
28 cnf2 23136 . . . . . . . . 9 (((𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
294, 26, 27, 28syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
30 eqid 2729 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑥𝑋, 𝑦𝑌𝐵)
3130fmpo 8047 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝑊) ↔ (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
3229, 31sylibr 234 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝑊))
3332r19.21bi 3229 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 ∈ (Base‘𝑊))
3433r19.21bi 3229 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐵 ∈ (Base‘𝑊))
35 eqid 2729 . . . . . 6 ( ·sf𝑊) = ( ·sf𝑊)
36 cnmpt1vsca.t . . . . . 6 · = ( ·𝑠𝑊)
3723, 6, 9, 35, 36scafval 20787 . . . . 5 ((𝐴 ∈ (Base‘𝐹) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
3820, 34, 37syl2anc 584 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
39383impa 1109 . . 3 ((𝜑𝑥𝑋𝑦𝑌) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
4039mpoeq3dva 7466 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴( ·sf𝑊)𝐵)) = (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)))
4135, 24, 6, 10vscacn 24073 . . . 4 (𝑊 ∈ TopMod → ( ·sf𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
425, 41syl 17 . . 3 (𝜑 → ( ·sf𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
431, 2, 13, 27, 42cnmpt22f 23562 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴( ·sf𝑊)𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
4440, 43eqeltrrd 2829 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  TopOpenctopn 17384   ·sf cscaf 20767  TopOnctopon 22797  TopSpctps 22819   Cn ccn 23111   ×t ctx 23447  TopModctlm 24045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-topgen 17406  df-scaf 20769  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-tx 23449  df-tmd 23959  df-tgp 23960  df-trg 24047  df-tlm 24049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator