MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2vsca Structured version   Visualization version   GIF version

Theorem cnmpt2vsca 24138
Description: Continuity of scalar multiplication; analogue of cnmpt22f 23618 which cannot be used directly because ·𝑠 is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
tlmtrg.f 𝐹 = (Scalar‘𝑊)
cnmpt1vsca.t · = ( ·𝑠𝑊)
cnmpt1vsca.j 𝐽 = (TopOpen‘𝑊)
cnmpt1vsca.k 𝐾 = (TopOpen‘𝐹)
cnmpt1vsca.w (𝜑𝑊 ∈ TopMod)
cnmpt1vsca.l (𝜑𝐿 ∈ (TopOn‘𝑋))
cnmpt2vsca.m (𝜑𝑀 ∈ (TopOn‘𝑌))
cnmpt2vsca.a (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾))
cnmpt2vsca.b (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
Assertion
Ref Expression
cnmpt2vsca (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿   𝜑,𝑥,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   · (𝑥,𝑦)   𝐿(𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem cnmpt2vsca
StepHypRef Expression
1 cnmpt1vsca.l . . . . . . . . . 10 (𝜑𝐿 ∈ (TopOn‘𝑋))
2 cnmpt2vsca.m . . . . . . . . . 10 (𝜑𝑀 ∈ (TopOn‘𝑌))
3 txtopon 23534 . . . . . . . . . 10 ((𝐿 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ (TopOn‘𝑌)) → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)))
5 cnmpt1vsca.w . . . . . . . . . . 11 (𝜑𝑊 ∈ TopMod)
6 tlmtrg.f . . . . . . . . . . . 12 𝐹 = (Scalar‘𝑊)
76tlmscatps 24134 . . . . . . . . . . 11 (𝑊 ∈ TopMod → 𝐹 ∈ TopSp)
85, 7syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ TopSp)
9 eqid 2736 . . . . . . . . . . 11 (Base‘𝐹) = (Base‘𝐹)
10 cnmpt1vsca.k . . . . . . . . . . 11 𝐾 = (TopOpen‘𝐹)
119, 10istps 22877 . . . . . . . . . 10 (𝐹 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝐹)))
128, 11sylib 218 . . . . . . . . 9 (𝜑𝐾 ∈ (TopOn‘(Base‘𝐹)))
13 cnmpt2vsca.a . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾))
14 cnf2 23192 . . . . . . . . 9 (((𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐹)) ∧ (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐿 ×t 𝑀) Cn 𝐾)) → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐹))
154, 12, 13, 14syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐹))
16 eqid 2736 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐴) = (𝑥𝑋, 𝑦𝑌𝐴)
1716fmpo 8072 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐹) ↔ (𝑥𝑋, 𝑦𝑌𝐴):(𝑋 × 𝑌)⟶(Base‘𝐹))
1815, 17sylibr 234 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐴 ∈ (Base‘𝐹))
1918r19.21bi 3238 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴 ∈ (Base‘𝐹))
2019r19.21bi 3238 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴 ∈ (Base‘𝐹))
21 tlmtps 24131 . . . . . . . . . . 11 (𝑊 ∈ TopMod → 𝑊 ∈ TopSp)
225, 21syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ TopSp)
23 eqid 2736 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
24 cnmpt1vsca.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝑊)
2523, 24istps 22877 . . . . . . . . . 10 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑊)))
2622, 25sylib 218 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑊)))
27 cnmpt2vsca.b . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
28 cnf2 23192 . . . . . . . . 9 (((𝐿 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐽 ∈ (TopOn‘(Base‘𝑊)) ∧ (𝑥𝑋, 𝑦𝑌𝐵) ∈ ((𝐿 ×t 𝑀) Cn 𝐽)) → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
294, 26, 27, 28syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
30 eqid 2736 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌𝐵) = (𝑥𝑋, 𝑦𝑌𝐵)
3130fmpo 8072 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝑊) ↔ (𝑥𝑋, 𝑦𝑌𝐵):(𝑋 × 𝑌)⟶(Base‘𝑊))
3229, 31sylibr 234 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 𝐵 ∈ (Base‘𝑊))
3332r19.21bi 3238 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐵 ∈ (Base‘𝑊))
3433r19.21bi 3238 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐵 ∈ (Base‘𝑊))
35 eqid 2736 . . . . . 6 ( ·sf𝑊) = ( ·sf𝑊)
36 cnmpt1vsca.t . . . . . 6 · = ( ·𝑠𝑊)
3723, 6, 9, 35, 36scafval 20843 . . . . 5 ((𝐴 ∈ (Base‘𝐹) ∧ 𝐵 ∈ (Base‘𝑊)) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
3820, 34, 37syl2anc 584 . . . 4 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
39383impa 1109 . . 3 ((𝜑𝑥𝑋𝑦𝑌) → (𝐴( ·sf𝑊)𝐵) = (𝐴 · 𝐵))
4039mpoeq3dva 7489 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴( ·sf𝑊)𝐵)) = (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)))
4135, 24, 6, 10vscacn 24129 . . . 4 (𝑊 ∈ TopMod → ( ·sf𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
425, 41syl 17 . . 3 (𝜑 → ( ·sf𝑊) ∈ ((𝐾 ×t 𝐽) Cn 𝐽))
431, 2, 13, 27, 42cnmpt22f 23618 . 2 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴( ·sf𝑊)𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
4440, 43eqeltrrd 2836 1 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (𝐴 · 𝐵)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052   × cxp 5657  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280  TopOpenctopn 17440   ·sf cscaf 20823  TopOnctopon 22853  TopSpctps 22875   Cn ccn 23167   ×t ctx 23503  TopModctlm 24101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-topgen 17462  df-scaf 20825  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cn 23170  df-tx 23505  df-tmd 24015  df-tgp 24016  df-trg 24103  df-tlm 24105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator