MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonicbnd2 Structured version   Visualization version   GIF version

Theorem harmonicbnd2 26338
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
harmonicbnd2 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ((1 − (log‘2))[,]γ))
Distinct variable group:   𝑚,𝑁

Proof of Theorem harmonicbnd2
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . . 5 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
21sumeq1d 15578 . . . 4 (𝑛 = 𝑁 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...𝑁)(1 / 𝑚))
3 fvoveq1 7376 . . . 4 (𝑛 = 𝑁 → (log‘(𝑛 + 1)) = (log‘(𝑁 + 1)))
42, 3oveq12d 7371 . . 3 (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))))
54eleq1d 2822 . 2 (𝑛 = 𝑁 → ((Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) ∈ ((1 − (log‘2))[,]γ) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ((1 − (log‘2))[,]γ)))
6 eqid 2736 . . . . 5 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
7 eqid 2736 . . . . 5 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
8 eqid 2736 . . . . 5 (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
9 oveq2 7361 . . . . . . 7 (𝑘 = 𝑛 → (1 / 𝑘) = (1 / 𝑛))
109oveq2d 7369 . . . . . . . 8 (𝑘 = 𝑛 → (1 + (1 / 𝑘)) = (1 + (1 / 𝑛)))
1110fveq2d 6843 . . . . . . 7 (𝑘 = 𝑛 → (log‘(1 + (1 / 𝑘))) = (log‘(1 + (1 / 𝑛))))
129, 11oveq12d 7371 . . . . . 6 (𝑘 = 𝑛 → ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) = ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
1312cbvmptv 5216 . . . . 5 (𝑘 ∈ ℕ ↦ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘))))) = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
146, 7, 8, 13emcllem7 26335 . . . 4 (γ ∈ ((1 − (log‘2))[,]1) ∧ (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))):ℕ⟶(γ[,]1) ∧ (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))):ℕ⟶((1 − (log‘2))[,]γ))
1514simp3i 1141 . . 3 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))):ℕ⟶((1 − (log‘2))[,]γ)
167fmpt 7054 . . 3 (∀𝑛 ∈ ℕ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) ∈ ((1 − (log‘2))[,]γ) ↔ (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))):ℕ⟶((1 − (log‘2))[,]γ))
1715, 16mpbir 230 . 2 𝑛 ∈ ℕ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) ∈ ((1 − (log‘2))[,]γ)
185, 17vtoclri 3543 1 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ((1 − (log‘2))[,]γ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wral 3062  cmpt 5186  wf 6489  cfv 6493  (class class class)co 7353  1c1 11048   + caddc 11050  cmin 11381   / cdiv 11808  cn 12149  2c2 12204  [,]cicc 13259  ...cfz 13416  Σcsu 15562  logclog 25894  γcem 26325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-inf2 9573  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125  ax-addf 11126  ax-mulf 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7613  df-om 7799  df-1st 7917  df-2nd 7918  df-supp 8089  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-1o 8408  df-2o 8409  df-er 8644  df-map 8763  df-pm 8764  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9302  df-fi 9343  df-sup 9374  df-inf 9375  df-oi 9442  df-card 9871  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-div 11809  df-nn 12150  df-2 12212  df-3 12213  df-4 12214  df-5 12215  df-6 12216  df-7 12217  df-8 12218  df-9 12219  df-n0 12410  df-z 12496  df-dec 12615  df-uz 12760  df-q 12866  df-rp 12908  df-xneg 13025  df-xadd 13026  df-xmul 13027  df-ioo 13260  df-ioc 13261  df-ico 13262  df-icc 13263  df-fz 13417  df-fzo 13560  df-fl 13689  df-mod 13767  df-seq 13899  df-exp 13960  df-fac 14166  df-bc 14195  df-hash 14223  df-shft 14944  df-cj 14976  df-re 14977  df-im 14978  df-sqrt 15112  df-abs 15113  df-limsup 15345  df-clim 15362  df-rlim 15363  df-sum 15563  df-ef 15942  df-sin 15944  df-cos 15945  df-pi 15947  df-struct 17011  df-sets 17028  df-slot 17046  df-ndx 17058  df-base 17076  df-ress 17105  df-plusg 17138  df-mulr 17139  df-starv 17140  df-sca 17141  df-vsca 17142  df-ip 17143  df-tset 17144  df-ple 17145  df-ds 17147  df-unif 17148  df-hom 17149  df-cco 17150  df-rest 17296  df-topn 17297  df-0g 17315  df-gsum 17316  df-topgen 17317  df-pt 17318  df-prds 17321  df-xrs 17376  df-qtop 17381  df-imas 17382  df-xps 17384  df-mre 17458  df-mrc 17459  df-acs 17461  df-mgm 18489  df-sgrp 18538  df-mnd 18549  df-submnd 18594  df-mulg 18864  df-cntz 19088  df-cmn 19555  df-psmet 20773  df-xmet 20774  df-met 20775  df-bl 20776  df-mopn 20777  df-fbas 20778  df-fg 20779  df-cnfld 20782  df-top 22227  df-topon 22244  df-topsp 22266  df-bases 22280  df-cld 22354  df-ntr 22355  df-cls 22356  df-nei 22433  df-lp 22471  df-perf 22472  df-cn 22562  df-cnp 22563  df-haus 22650  df-tx 22897  df-hmeo 23090  df-fil 23181  df-fm 23273  df-flim 23274  df-flf 23275  df-xms 23657  df-ms 23658  df-tms 23659  df-cncf 24225  df-limc 25214  df-dv 25215  df-log 25896  df-em 26326
This theorem is referenced by:  harmonicbnd3  26341
  Copyright terms: Public domain W3C validator