Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  srhmsubcALTV Structured version   Visualization version   GIF version

Theorem srhmsubcALTV 48286
Description: According to df-subc 17750, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17778 and subcss2 17781). Therefore, the set of special ring homomorphisms (i.e., ring homomorphisms from a special ring to another ring of that kind) is a subcategory of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
srhmsubcALTV.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubcALTV.c 𝐶 = (𝑈𝑆)
srhmsubcALTV.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
srhmsubcALTV (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
Distinct variable groups:   𝑆,𝑟   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝐽(𝑠,𝑟)

Proof of Theorem srhmsubcALTV
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srhmsubcALTV.c . . . 4 𝐶 = (𝑈𝑆)
2 eleq1w 2811 . . . . . . 7 (𝑟 = 𝑥 → (𝑟 ∈ Ring ↔ 𝑥 ∈ Ring))
3 srhmsubcALTV.s . . . . . . 7 𝑟𝑆 𝑟 ∈ Ring
42, 3vtoclri 3553 . . . . . 6 (𝑥𝑆𝑥 ∈ Ring)
54ssriv 3947 . . . . 5 𝑆 ⊆ Ring
6 sslin 4202 . . . . 5 (𝑆 ⊆ Ring → (𝑈𝑆) ⊆ (𝑈 ∩ Ring))
75, 6mp1i 13 . . . 4 (𝑈𝑉 → (𝑈𝑆) ⊆ (𝑈 ∩ Ring))
81, 7eqsstrid 3982 . . 3 (𝑈𝑉𝐶 ⊆ (𝑈 ∩ Ring))
9 ssid 3966 . . . . . 6 (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦)
10 eqid 2729 . . . . . . 7 (RingCatALTV‘𝑈) = (RingCatALTV‘𝑈)
11 eqid 2729 . . . . . . 7 (Base‘(RingCatALTV‘𝑈)) = (Base‘(RingCatALTV‘𝑈))
12 simpl 482 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑈𝑉)
13 eqid 2729 . . . . . . 7 (Hom ‘(RingCatALTV‘𝑈)) = (Hom ‘(RingCatALTV‘𝑈))
143, 1srhmsubcALTVlem1 48284 . . . . . . . 8 ((𝑈𝑉𝑥𝐶) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
1514adantrr 717 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
163, 1srhmsubcALTVlem1 48284 . . . . . . . 8 ((𝑈𝑉𝑦𝐶) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
1716adantrl 716 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
1810, 11, 12, 13, 15, 17ringchomALTV 48263 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦) = (𝑥 RingHom 𝑦))
199, 18sseqtrrid 3987 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 RingHom 𝑦) ⊆ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
20 srhmsubcALTV.j . . . . . . 7 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
2120a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
22 oveq12 7378 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
2322adantl 481 . . . . . 6 (((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) ∧ (𝑟 = 𝑥𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
24 simprl 770 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
25 simprr 772 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
26 ovexd 7404 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 RingHom 𝑦) ∈ V)
2721, 23, 24, 25, 26ovmpod 7521 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦))
28 eqid 2729 . . . . . 6 (Homf ‘(RingCatALTV‘𝑈)) = (Homf ‘(RingCatALTV‘𝑈))
2928, 11, 13, 15, 17homfval 17629 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
3019, 27, 293sstr4d 3999 . . . 4 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦))
3130ralrimivva 3178 . . 3 (𝑈𝑉 → ∀𝑥𝐶𝑦𝐶 (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦))
32 ovex 7402 . . . . . 6 (𝑟 RingHom 𝑠) ∈ V
3320, 32fnmpoi 8028 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
3433a1i 11 . . . 4 (𝑈𝑉𝐽 Fn (𝐶 × 𝐶))
3528, 11homffn 17630 . . . . 5 (Homf ‘(RingCatALTV‘𝑈)) Fn ((Base‘(RingCatALTV‘𝑈)) × (Base‘(RingCatALTV‘𝑈)))
36 id 22 . . . . . . . . 9 (𝑈𝑉𝑈𝑉)
3710, 11, 36ringcbasALTV 48261 . . . . . . . 8 (𝑈𝑉 → (Base‘(RingCatALTV‘𝑈)) = (𝑈 ∩ Ring))
3837eqcomd 2735 . . . . . . 7 (𝑈𝑉 → (𝑈 ∩ Ring) = (Base‘(RingCatALTV‘𝑈)))
3938sqxpeqd 5663 . . . . . 6 (𝑈𝑉 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = ((Base‘(RingCatALTV‘𝑈)) × (Base‘(RingCatALTV‘𝑈))))
4039fneq2d 6594 . . . . 5 (𝑈𝑉 → ((Homf ‘(RingCatALTV‘𝑈)) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) ↔ (Homf ‘(RingCatALTV‘𝑈)) Fn ((Base‘(RingCatALTV‘𝑈)) × (Base‘(RingCatALTV‘𝑈)))))
4135, 40mpbiri 258 . . . 4 (𝑈𝑉 → (Homf ‘(RingCatALTV‘𝑈)) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
42 inex1g 5269 . . . 4 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
4334, 41, 42isssc 17758 . . 3 (𝑈𝑉 → (𝐽cat (Homf ‘(RingCatALTV‘𝑈)) ↔ (𝐶 ⊆ (𝑈 ∩ Ring) ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦))))
448, 31, 43mpbir2and 713 . 2 (𝑈𝑉𝐽cat (Homf ‘(RingCatALTV‘𝑈)))
451elin2 4162 . . . . . . . 8 (𝑥𝐶 ↔ (𝑥𝑈𝑥𝑆))
464adantl 481 . . . . . . . 8 ((𝑥𝑈𝑥𝑆) → 𝑥 ∈ Ring)
4745, 46sylbi 217 . . . . . . 7 (𝑥𝐶𝑥 ∈ Ring)
4847adantl 481 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑥 ∈ Ring)
49 eqid 2729 . . . . . . 7 (Base‘𝑥) = (Base‘𝑥)
5049idrhm 20375 . . . . . 6 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
5148, 50syl 17 . . . . 5 ((𝑈𝑉𝑥𝐶) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
52 eqid 2729 . . . . . 6 (Id‘(RingCatALTV‘𝑈)) = (Id‘(RingCatALTV‘𝑈))
53 simpl 482 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑈𝑉)
5410, 11, 52, 53, 14, 49ringcidALTV 48269 . . . . 5 ((𝑈𝑉𝑥𝐶) → ((Id‘(RingCatALTV‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
5520a1i 11 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
56 oveq12 7378 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑥) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑥))
5756adantl 481 . . . . . 6 (((𝑈𝑉𝑥𝐶) ∧ (𝑟 = 𝑥𝑠 = 𝑥)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑥))
58 simpr 484 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑥𝐶)
59 ovexd 7404 . . . . . 6 ((𝑈𝑉𝑥𝐶) → (𝑥 RingHom 𝑥) ∈ V)
6055, 57, 58, 58, 59ovmpod 7521 . . . . 5 ((𝑈𝑉𝑥𝐶) → (𝑥𝐽𝑥) = (𝑥 RingHom 𝑥))
6151, 54, 603eltr4d 2843 . . . 4 ((𝑈𝑉𝑥𝐶) → ((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥))
62 eqid 2729 . . . . . . . . 9 (comp‘(RingCatALTV‘𝑈)) = (comp‘(RingCatALTV‘𝑈))
6310ringccatALTV 48268 . . . . . . . . . 10 (𝑈𝑉 → (RingCatALTV‘𝑈) ∈ Cat)
6463ad3antrrr 730 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (RingCatALTV‘𝑈) ∈ Cat)
6514adantr 480 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
6665adantr 480 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
6716ad2ant2r 747 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
6867adantr 480 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
693, 1srhmsubcALTVlem1 48284 . . . . . . . . . . 11 ((𝑈𝑉𝑧𝐶) → 𝑧 ∈ (Base‘(RingCatALTV‘𝑈)))
7069ad2ant2rl 749 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧 ∈ (Base‘(RingCatALTV‘𝑈)))
7170adantr 480 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑧 ∈ (Base‘(RingCatALTV‘𝑈)))
7253adantr 480 . . . . . . . . . . . . . . 15 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑈𝑉)
73 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑦𝐶𝑧𝐶) → 𝑦𝐶)
7458, 73anim12i 613 . . . . . . . . . . . . . . 15 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐶𝑦𝐶))
7572, 74jca 511 . . . . . . . . . . . . . 14 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)))
763, 1, 20srhmsubcALTVlem2 48285 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
7775, 76syl 17 . . . . . . . . . . . . 13 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐽𝑦) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
7877eleq2d 2814 . . . . . . . . . . . 12 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑓 ∈ (𝑥𝐽𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦)))
7978biimpcd 249 . . . . . . . . . . 11 (𝑓 ∈ (𝑥𝐽𝑦) → (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦)))
8079adantr 480 . . . . . . . . . 10 ((𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦)))
8180impcom 407 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
823, 1, 20srhmsubcALTVlem2 48285 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑦𝐶𝑧𝐶)) → (𝑦𝐽𝑧) = (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧))
8382adantlr 715 . . . . . . . . . . . . 13 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑦𝐽𝑧) = (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧))
8483eleq2d 2814 . . . . . . . . . . . 12 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑔 ∈ (𝑦𝐽𝑧) ↔ 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧)))
8584biimpd 229 . . . . . . . . . . 11 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑔 ∈ (𝑦𝐽𝑧) → 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧)))
8685adantld 490 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → ((𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧)))
8786imp 406 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧))
8811, 13, 62, 64, 66, 68, 71, 81, 87catcocl 17622 . . . . . . . 8 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧))
8910, 11, 72, 13, 65, 70ringchomALTV 48263 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧) = (𝑥 RingHom 𝑧))
9089eqcomd 2735 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥 RingHom 𝑧) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧))
9190adantr 480 . . . . . . . 8 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑥 RingHom 𝑧) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧))
9288, 91eleqtrrd 2831 . . . . . . 7 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥 RingHom 𝑧))
9320a1i 11 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
94 oveq12 7378 . . . . . . . . . 10 ((𝑟 = 𝑥𝑠 = 𝑧) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑧))
9594adantl 481 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑟 = 𝑥𝑠 = 𝑧)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑧))
9658adantr 480 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑥𝐶)
97 simprr 772 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧𝐶)
98 ovexd 7404 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥 RingHom 𝑧) ∈ V)
9993, 95, 96, 97, 98ovmpod 7521 . . . . . . . 8 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐽𝑧) = (𝑥 RingHom 𝑧))
10099adantr 480 . . . . . . 7 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑥𝐽𝑧) = (𝑥 RingHom 𝑧))
10192, 100eleqtrrd 2831 . . . . . 6 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
102101ralrimivva 3178 . . . . 5 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
103102ralrimivva 3178 . . . 4 ((𝑈𝑉𝑥𝐶) → ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
10461, 103jca 511 . . 3 ((𝑈𝑉𝑥𝐶) → (((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
105104ralrimiva 3125 . 2 (𝑈𝑉 → ∀𝑥𝐶 (((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
10628, 52, 62, 63, 34issubc2 17774 . 2 (𝑈𝑉 → (𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)) ↔ (𝐽cat (Homf ‘(RingCatALTV‘𝑈)) ∧ ∀𝑥𝐶 (((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
10744, 105, 106mpbir2and 713 1 (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cin 3910  wss 3911  cop 4591   class class class wbr 5102   I cid 5525   × cxp 5629  cres 5633   Fn wfn 6494  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  Hom chom 17207  compcco 17208  Catccat 17601  Idccid 17602  Homf chomf 17603  cat cssc 17745  Subcatcsubc 17747  Ringcrg 20118   RingHom crh 20354  RingCatALTVcringcALTV 48248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-hom 17220  df-cco 17221  df-0g 17380  df-cat 17605  df-cid 17606  df-homf 17607  df-ssc 17748  df-subc 17750  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-grp 18844  df-ghm 19121  df-mgp 20026  df-ur 20067  df-ring 20120  df-rhm 20357  df-ringcALTV 48249
This theorem is referenced by:  sringcatALTV  48287  crhmsubcALTV  48288  drhmsubcALTV  48290  fldhmsubcALTV  48294
  Copyright terms: Public domain W3C validator