Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  srhmsubcALTV Structured version   Visualization version   GIF version

Theorem srhmsubcALTV 48246
Description: According to df-subc 17857, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 (see subcssc 17886 and subcss2 17889). Therefore, the set of special ring homomorphisms (i.e., ring homomorphisms from a special ring to another ring of that kind) is a subcategory of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
srhmsubcALTV.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubcALTV.c 𝐶 = (𝑈𝑆)
srhmsubcALTV.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
srhmsubcALTV (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
Distinct variable groups:   𝑆,𝑟   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝐽(𝑠,𝑟)

Proof of Theorem srhmsubcALTV
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srhmsubcALTV.c . . . 4 𝐶 = (𝑈𝑆)
2 eleq1w 2823 . . . . . . 7 (𝑟 = 𝑥 → (𝑟 ∈ Ring ↔ 𝑥 ∈ Ring))
3 srhmsubcALTV.s . . . . . . 7 𝑟𝑆 𝑟 ∈ Ring
42, 3vtoclri 3589 . . . . . 6 (𝑥𝑆𝑥 ∈ Ring)
54ssriv 3986 . . . . 5 𝑆 ⊆ Ring
6 sslin 4242 . . . . 5 (𝑆 ⊆ Ring → (𝑈𝑆) ⊆ (𝑈 ∩ Ring))
75, 6mp1i 13 . . . 4 (𝑈𝑉 → (𝑈𝑆) ⊆ (𝑈 ∩ Ring))
81, 7eqsstrid 4021 . . 3 (𝑈𝑉𝐶 ⊆ (𝑈 ∩ Ring))
9 ssid 4005 . . . . . 6 (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦)
10 eqid 2736 . . . . . . 7 (RingCatALTV‘𝑈) = (RingCatALTV‘𝑈)
11 eqid 2736 . . . . . . 7 (Base‘(RingCatALTV‘𝑈)) = (Base‘(RingCatALTV‘𝑈))
12 simpl 482 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑈𝑉)
13 eqid 2736 . . . . . . 7 (Hom ‘(RingCatALTV‘𝑈)) = (Hom ‘(RingCatALTV‘𝑈))
143, 1srhmsubcALTVlem1 48244 . . . . . . . 8 ((𝑈𝑉𝑥𝐶) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
1514adantrr 717 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
163, 1srhmsubcALTVlem1 48244 . . . . . . . 8 ((𝑈𝑉𝑦𝐶) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
1716adantrl 716 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
1810, 11, 12, 13, 15, 17ringchomALTV 48223 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦) = (𝑥 RingHom 𝑦))
199, 18sseqtrrid 4026 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 RingHom 𝑦) ⊆ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
20 srhmsubcALTV.j . . . . . . 7 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
2120a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
22 oveq12 7441 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
2322adantl 481 . . . . . 6 (((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) ∧ (𝑟 = 𝑥𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
24 simprl 770 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
25 simprr 772 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
26 ovexd 7467 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 RingHom 𝑦) ∈ V)
2721, 23, 24, 25, 26ovmpod 7586 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦))
28 eqid 2736 . . . . . 6 (Homf ‘(RingCatALTV‘𝑈)) = (Homf ‘(RingCatALTV‘𝑈))
2928, 11, 13, 15, 17homfval 17736 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
3019, 27, 293sstr4d 4038 . . . 4 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦))
3130ralrimivva 3201 . . 3 (𝑈𝑉 → ∀𝑥𝐶𝑦𝐶 (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦))
32 ovex 7465 . . . . . 6 (𝑟 RingHom 𝑠) ∈ V
3320, 32fnmpoi 8096 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
3433a1i 11 . . . 4 (𝑈𝑉𝐽 Fn (𝐶 × 𝐶))
3528, 11homffn 17737 . . . . 5 (Homf ‘(RingCatALTV‘𝑈)) Fn ((Base‘(RingCatALTV‘𝑈)) × (Base‘(RingCatALTV‘𝑈)))
36 id 22 . . . . . . . . 9 (𝑈𝑉𝑈𝑉)
3710, 11, 36ringcbasALTV 48221 . . . . . . . 8 (𝑈𝑉 → (Base‘(RingCatALTV‘𝑈)) = (𝑈 ∩ Ring))
3837eqcomd 2742 . . . . . . 7 (𝑈𝑉 → (𝑈 ∩ Ring) = (Base‘(RingCatALTV‘𝑈)))
3938sqxpeqd 5716 . . . . . 6 (𝑈𝑉 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = ((Base‘(RingCatALTV‘𝑈)) × (Base‘(RingCatALTV‘𝑈))))
4039fneq2d 6661 . . . . 5 (𝑈𝑉 → ((Homf ‘(RingCatALTV‘𝑈)) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) ↔ (Homf ‘(RingCatALTV‘𝑈)) Fn ((Base‘(RingCatALTV‘𝑈)) × (Base‘(RingCatALTV‘𝑈)))))
4135, 40mpbiri 258 . . . 4 (𝑈𝑉 → (Homf ‘(RingCatALTV‘𝑈)) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
42 inex1g 5318 . . . 4 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
4334, 41, 42isssc 17865 . . 3 (𝑈𝑉 → (𝐽cat (Homf ‘(RingCatALTV‘𝑈)) ↔ (𝐶 ⊆ (𝑈 ∩ Ring) ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦))))
448, 31, 43mpbir2and 713 . 2 (𝑈𝑉𝐽cat (Homf ‘(RingCatALTV‘𝑈)))
451elin2 4202 . . . . . . . 8 (𝑥𝐶 ↔ (𝑥𝑈𝑥𝑆))
464adantl 481 . . . . . . . 8 ((𝑥𝑈𝑥𝑆) → 𝑥 ∈ Ring)
4745, 46sylbi 217 . . . . . . 7 (𝑥𝐶𝑥 ∈ Ring)
4847adantl 481 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑥 ∈ Ring)
49 eqid 2736 . . . . . . 7 (Base‘𝑥) = (Base‘𝑥)
5049idrhm 20491 . . . . . 6 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
5148, 50syl 17 . . . . 5 ((𝑈𝑉𝑥𝐶) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
52 eqid 2736 . . . . . 6 (Id‘(RingCatALTV‘𝑈)) = (Id‘(RingCatALTV‘𝑈))
53 simpl 482 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑈𝑉)
5410, 11, 52, 53, 14, 49ringcidALTV 48229 . . . . 5 ((𝑈𝑉𝑥𝐶) → ((Id‘(RingCatALTV‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
5520a1i 11 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
56 oveq12 7441 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑥) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑥))
5756adantl 481 . . . . . 6 (((𝑈𝑉𝑥𝐶) ∧ (𝑟 = 𝑥𝑠 = 𝑥)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑥))
58 simpr 484 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑥𝐶)
59 ovexd 7467 . . . . . 6 ((𝑈𝑉𝑥𝐶) → (𝑥 RingHom 𝑥) ∈ V)
6055, 57, 58, 58, 59ovmpod 7586 . . . . 5 ((𝑈𝑉𝑥𝐶) → (𝑥𝐽𝑥) = (𝑥 RingHom 𝑥))
6151, 54, 603eltr4d 2855 . . . 4 ((𝑈𝑉𝑥𝐶) → ((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥))
62 eqid 2736 . . . . . . . . 9 (comp‘(RingCatALTV‘𝑈)) = (comp‘(RingCatALTV‘𝑈))
6310ringccatALTV 48228 . . . . . . . . . 10 (𝑈𝑉 → (RingCatALTV‘𝑈) ∈ Cat)
6463ad3antrrr 730 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (RingCatALTV‘𝑈) ∈ Cat)
6514adantr 480 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
6665adantr 480 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
6716ad2ant2r 747 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
6867adantr 480 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
693, 1srhmsubcALTVlem1 48244 . . . . . . . . . . 11 ((𝑈𝑉𝑧𝐶) → 𝑧 ∈ (Base‘(RingCatALTV‘𝑈)))
7069ad2ant2rl 749 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧 ∈ (Base‘(RingCatALTV‘𝑈)))
7170adantr 480 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑧 ∈ (Base‘(RingCatALTV‘𝑈)))
7253adantr 480 . . . . . . . . . . . . . . 15 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑈𝑉)
73 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑦𝐶𝑧𝐶) → 𝑦𝐶)
7458, 73anim12i 613 . . . . . . . . . . . . . . 15 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐶𝑦𝐶))
7572, 74jca 511 . . . . . . . . . . . . . 14 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)))
763, 1, 20srhmsubcALTVlem2 48245 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
7775, 76syl 17 . . . . . . . . . . . . 13 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐽𝑦) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
7877eleq2d 2826 . . . . . . . . . . . 12 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑓 ∈ (𝑥𝐽𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦)))
7978biimpcd 249 . . . . . . . . . . 11 (𝑓 ∈ (𝑥𝐽𝑦) → (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦)))
8079adantr 480 . . . . . . . . . 10 ((𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦)))
8180impcom 407 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
823, 1, 20srhmsubcALTVlem2 48245 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑦𝐶𝑧𝐶)) → (𝑦𝐽𝑧) = (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧))
8382adantlr 715 . . . . . . . . . . . . 13 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑦𝐽𝑧) = (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧))
8483eleq2d 2826 . . . . . . . . . . . 12 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑔 ∈ (𝑦𝐽𝑧) ↔ 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧)))
8584biimpd 229 . . . . . . . . . . 11 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑔 ∈ (𝑦𝐽𝑧) → 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧)))
8685adantld 490 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → ((𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧)))
8786imp 406 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧))
8811, 13, 62, 64, 66, 68, 71, 81, 87catcocl 17729 . . . . . . . 8 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧))
8910, 11, 72, 13, 65, 70ringchomALTV 48223 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧) = (𝑥 RingHom 𝑧))
9089eqcomd 2742 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥 RingHom 𝑧) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧))
9190adantr 480 . . . . . . . 8 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑥 RingHom 𝑧) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧))
9288, 91eleqtrrd 2843 . . . . . . 7 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥 RingHom 𝑧))
9320a1i 11 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
94 oveq12 7441 . . . . . . . . . 10 ((𝑟 = 𝑥𝑠 = 𝑧) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑧))
9594adantl 481 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑟 = 𝑥𝑠 = 𝑧)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑧))
9658adantr 480 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑥𝐶)
97 simprr 772 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧𝐶)
98 ovexd 7467 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥 RingHom 𝑧) ∈ V)
9993, 95, 96, 97, 98ovmpod 7586 . . . . . . . 8 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐽𝑧) = (𝑥 RingHom 𝑧))
10099adantr 480 . . . . . . 7 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑥𝐽𝑧) = (𝑥 RingHom 𝑧))
10192, 100eleqtrrd 2843 . . . . . 6 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
102101ralrimivva 3201 . . . . 5 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
103102ralrimivva 3201 . . . 4 ((𝑈𝑉𝑥𝐶) → ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
10461, 103jca 511 . . 3 ((𝑈𝑉𝑥𝐶) → (((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
105104ralrimiva 3145 . 2 (𝑈𝑉 → ∀𝑥𝐶 (((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
10628, 52, 62, 63, 34issubc2 17882 . 2 (𝑈𝑉 → (𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)) ↔ (𝐽cat (Homf ‘(RingCatALTV‘𝑈)) ∧ ∀𝑥𝐶 (((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
10744, 105, 106mpbir2and 713 1 (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  Vcvv 3479  cin 3949  wss 3950  cop 4631   class class class wbr 5142   I cid 5576   × cxp 5682  cres 5686   Fn wfn 6555  cfv 6560  (class class class)co 7432  cmpo 7434  Basecbs 17248  Hom chom 17309  compcco 17310  Catccat 17708  Idccid 17709  Homf chomf 17710  cat cssc 17852  Subcatcsubc 17854  Ringcrg 20231   RingHom crh 20470  RingCatALTVcringcALTV 48208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-hom 17322  df-cco 17323  df-0g 17487  df-cat 17712  df-cid 17713  df-homf 17714  df-ssc 17855  df-subc 17857  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-grp 18955  df-ghm 19232  df-mgp 20139  df-ur 20180  df-ring 20233  df-rhm 20473  df-ringcALTV 48209
This theorem is referenced by:  sringcatALTV  48247  crhmsubcALTV  48248  drhmsubcALTV  48250  fldhmsubcALTV  48254
  Copyright terms: Public domain W3C validator