Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  srhmsubcALTV Structured version   Visualization version   GIF version

Theorem srhmsubcALTV 42656
Description: According to df-subc 16670, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16698 and subcss2 16701). Therefore, the set of special ring homomorphisms (i.e. ring homomorphisms from a special ring to another ring of that kind) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
srhmsubcALTV.s 𝑟𝑆 𝑟 ∈ Ring
srhmsubcALTV.c 𝐶 = (𝑈𝑆)
srhmsubcALTV.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
srhmsubcALTV (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
Distinct variable groups:   𝑆,𝑟   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝐽(𝑠,𝑟)

Proof of Theorem srhmsubcALTV
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 srhmsubcALTV.c . . . 4 𝐶 = (𝑈𝑆)
2 eleq1w 2864 . . . . . . 7 (𝑟 = 𝑥 → (𝑟 ∈ Ring ↔ 𝑥 ∈ Ring))
3 srhmsubcALTV.s . . . . . . 7 𝑟𝑆 𝑟 ∈ Ring
42, 3vtoclri 3472 . . . . . 6 (𝑥𝑆𝑥 ∈ Ring)
54ssriv 3796 . . . . 5 𝑆 ⊆ Ring
6 sslin 4029 . . . . 5 (𝑆 ⊆ Ring → (𝑈𝑆) ⊆ (𝑈 ∩ Ring))
75, 6mp1i 13 . . . 4 (𝑈𝑉 → (𝑈𝑆) ⊆ (𝑈 ∩ Ring))
81, 7syl5eqss 3840 . . 3 (𝑈𝑉𝐶 ⊆ (𝑈 ∩ Ring))
9 ssid 3814 . . . . . 6 (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦)
10 eqid 2802 . . . . . . 7 (RingCatALTV‘𝑈) = (RingCatALTV‘𝑈)
11 eqid 2802 . . . . . . 7 (Base‘(RingCatALTV‘𝑈)) = (Base‘(RingCatALTV‘𝑈))
12 simpl 470 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑈𝑉)
13 eqid 2802 . . . . . . 7 (Hom ‘(RingCatALTV‘𝑈)) = (Hom ‘(RingCatALTV‘𝑈))
143, 1srhmsubcALTVlem1 42654 . . . . . . . 8 ((𝑈𝑉𝑥𝐶) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
1514adantrr 699 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
163, 1srhmsubcALTVlem1 42654 . . . . . . . 8 ((𝑈𝑉𝑦𝐶) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
1716adantrl 698 . . . . . . 7 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
1810, 11, 12, 13, 15, 17ringchomALTV 42610 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦) = (𝑥 RingHom 𝑦))
199, 18syl5sseqr 3845 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 RingHom 𝑦) ⊆ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
20 srhmsubcALTV.j . . . . . . 7 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
2120a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
22 oveq12 6877 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
2322adantl 469 . . . . . 6 (((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) ∧ (𝑟 = 𝑥𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
24 simprl 778 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑥𝐶)
25 simprr 780 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → 𝑦𝐶)
26 ovexd 6902 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥 RingHom 𝑦) ∈ V)
2721, 23, 24, 25, 26ovmpt2d 7012 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦))
28 eqid 2802 . . . . . 6 (Homf ‘(RingCatALTV‘𝑈)) = (Homf ‘(RingCatALTV‘𝑈))
2928, 11, 13, 15, 17homfval 16550 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
3019, 27, 293sstr4d 3839 . . . 4 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦))
3130ralrimivva 3155 . . 3 (𝑈𝑉 → ∀𝑥𝐶𝑦𝐶 (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦))
32 ovex 6900 . . . . . 6 (𝑟 RingHom 𝑠) ∈ V
3320, 32fnmpt2i 7466 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
3433a1i 11 . . . 4 (𝑈𝑉𝐽 Fn (𝐶 × 𝐶))
3528, 11homffn 16551 . . . . 5 (Homf ‘(RingCatALTV‘𝑈)) Fn ((Base‘(RingCatALTV‘𝑈)) × (Base‘(RingCatALTV‘𝑈)))
36 id 22 . . . . . . . . 9 (𝑈𝑉𝑈𝑉)
3710, 11, 36ringcbasALTV 42608 . . . . . . . 8 (𝑈𝑉 → (Base‘(RingCatALTV‘𝑈)) = (𝑈 ∩ Ring))
3837eqcomd 2808 . . . . . . 7 (𝑈𝑉 → (𝑈 ∩ Ring) = (Base‘(RingCatALTV‘𝑈)))
3938sqxpeqd 5336 . . . . . 6 (𝑈𝑉 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = ((Base‘(RingCatALTV‘𝑈)) × (Base‘(RingCatALTV‘𝑈))))
4039fneq2d 6187 . . . . 5 (𝑈𝑉 → ((Homf ‘(RingCatALTV‘𝑈)) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) ↔ (Homf ‘(RingCatALTV‘𝑈)) Fn ((Base‘(RingCatALTV‘𝑈)) × (Base‘(RingCatALTV‘𝑈)))))
4135, 40mpbiri 249 . . . 4 (𝑈𝑉 → (Homf ‘(RingCatALTV‘𝑈)) Fn ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))
42 inex1g 4990 . . . 4 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
4334, 41, 42isssc 16678 . . 3 (𝑈𝑉 → (𝐽cat (Homf ‘(RingCatALTV‘𝑈)) ↔ (𝐶 ⊆ (𝑈 ∩ Ring) ∧ ∀𝑥𝐶𝑦𝐶 (𝑥𝐽𝑦) ⊆ (𝑥(Homf ‘(RingCatALTV‘𝑈))𝑦))))
448, 31, 43mpbir2and 695 . 2 (𝑈𝑉𝐽cat (Homf ‘(RingCatALTV‘𝑈)))
451elin2 3994 . . . . . . . 8 (𝑥𝐶 ↔ (𝑥𝑈𝑥𝑆))
464adantl 469 . . . . . . . 8 ((𝑥𝑈𝑥𝑆) → 𝑥 ∈ Ring)
4745, 46sylbi 208 . . . . . . 7 (𝑥𝐶𝑥 ∈ Ring)
4847adantl 469 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑥 ∈ Ring)
49 eqid 2802 . . . . . . 7 (Base‘𝑥) = (Base‘𝑥)
5049idrhm 18929 . . . . . 6 (𝑥 ∈ Ring → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
5148, 50syl 17 . . . . 5 ((𝑈𝑉𝑥𝐶) → ( I ↾ (Base‘𝑥)) ∈ (𝑥 RingHom 𝑥))
52 eqid 2802 . . . . . 6 (Id‘(RingCatALTV‘𝑈)) = (Id‘(RingCatALTV‘𝑈))
53 simpl 470 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑈𝑉)
5410, 11, 52, 53, 14, 49ringcidALTV 42616 . . . . 5 ((𝑈𝑉𝑥𝐶) → ((Id‘(RingCatALTV‘𝑈))‘𝑥) = ( I ↾ (Base‘𝑥)))
5520a1i 11 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
56 oveq12 6877 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑥) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑥))
5756adantl 469 . . . . . 6 (((𝑈𝑉𝑥𝐶) ∧ (𝑟 = 𝑥𝑠 = 𝑥)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑥))
58 simpr 473 . . . . . 6 ((𝑈𝑉𝑥𝐶) → 𝑥𝐶)
59 ovexd 6902 . . . . . 6 ((𝑈𝑉𝑥𝐶) → (𝑥 RingHom 𝑥) ∈ V)
6055, 57, 58, 58, 59ovmpt2d 7012 . . . . 5 ((𝑈𝑉𝑥𝐶) → (𝑥𝐽𝑥) = (𝑥 RingHom 𝑥))
6151, 54, 603eltr4d 2896 . . . 4 ((𝑈𝑉𝑥𝐶) → ((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥))
62 eqid 2802 . . . . . . . . 9 (comp‘(RingCatALTV‘𝑈)) = (comp‘(RingCatALTV‘𝑈))
6310ringccatALTV 42615 . . . . . . . . . 10 (𝑈𝑉 → (RingCatALTV‘𝑈) ∈ Cat)
6463ad3antrrr 712 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (RingCatALTV‘𝑈) ∈ Cat)
6514adantr 468 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
6665adantr 468 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑥 ∈ (Base‘(RingCatALTV‘𝑈)))
6716ad2ant2r 744 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
6867adantr 468 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑦 ∈ (Base‘(RingCatALTV‘𝑈)))
693, 1srhmsubcALTVlem1 42654 . . . . . . . . . . 11 ((𝑈𝑉𝑧𝐶) → 𝑧 ∈ (Base‘(RingCatALTV‘𝑈)))
7069ad2ant2rl 746 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧 ∈ (Base‘(RingCatALTV‘𝑈)))
7170adantr 468 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑧 ∈ (Base‘(RingCatALTV‘𝑈)))
7253adantr 468 . . . . . . . . . . . . . . 15 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑈𝑉)
73 simpl 470 . . . . . . . . . . . . . . . 16 ((𝑦𝐶𝑧𝐶) → 𝑦𝐶)
7458, 73anim12i 602 . . . . . . . . . . . . . . 15 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐶𝑦𝐶))
7572, 74jca 503 . . . . . . . . . . . . . 14 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)))
763, 1, 20srhmsubcALTVlem2 42655 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥𝐽𝑦) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
7775, 76syl 17 . . . . . . . . . . . . 13 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐽𝑦) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
7877eleq2d 2867 . . . . . . . . . . . 12 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑓 ∈ (𝑥𝐽𝑦) ↔ 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦)))
7978biimpcd 240 . . . . . . . . . . 11 (𝑓 ∈ (𝑥𝐽𝑦) → (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦)))
8079adantr 468 . . . . . . . . . 10 ((𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦)))
8180impcom 396 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑓 ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑦))
823, 1, 20srhmsubcALTVlem2 42655 . . . . . . . . . . . . . 14 ((𝑈𝑉 ∧ (𝑦𝐶𝑧𝐶)) → (𝑦𝐽𝑧) = (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧))
8382adantlr 697 . . . . . . . . . . . . 13 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑦𝐽𝑧) = (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧))
8483eleq2d 2867 . . . . . . . . . . . 12 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑔 ∈ (𝑦𝐽𝑧) ↔ 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧)))
8584biimpd 220 . . . . . . . . . . 11 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑔 ∈ (𝑦𝐽𝑧) → 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧)))
8685adantld 480 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → ((𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧)) → 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧)))
8786imp 395 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → 𝑔 ∈ (𝑦(Hom ‘(RingCatALTV‘𝑈))𝑧))
8811, 13, 62, 64, 66, 68, 71, 81, 87catcocl 16544 . . . . . . . 8 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧))
8910, 11, 72, 13, 65, 70ringchomALTV 42610 . . . . . . . . . 10 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧) = (𝑥 RingHom 𝑧))
9089eqcomd 2808 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥 RingHom 𝑧) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧))
9190adantr 468 . . . . . . . 8 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑥 RingHom 𝑧) = (𝑥(Hom ‘(RingCatALTV‘𝑈))𝑧))
9288, 91eleqtrrd 2884 . . . . . . 7 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥 RingHom 𝑧))
9320a1i 11 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
94 oveq12 6877 . . . . . . . . . 10 ((𝑟 = 𝑥𝑠 = 𝑧) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑧))
9594adantl 469 . . . . . . . . 9 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑟 = 𝑥𝑠 = 𝑧)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑧))
9658adantr 468 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑥𝐶)
97 simprr 780 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → 𝑧𝐶)
98 ovexd 6902 . . . . . . . . 9 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥 RingHom 𝑧) ∈ V)
9993, 95, 96, 97, 98ovmpt2d 7012 . . . . . . . 8 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → (𝑥𝐽𝑧) = (𝑥 RingHom 𝑧))
10099adantr 468 . . . . . . 7 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑥𝐽𝑧) = (𝑥 RingHom 𝑧))
10192, 100eleqtrrd 2884 . . . . . 6 ((((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
102101ralrimivva 3155 . . . . 5 (((𝑈𝑉𝑥𝐶) ∧ (𝑦𝐶𝑧𝐶)) → ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
103102ralrimivva 3155 . . . 4 ((𝑈𝑉𝑥𝐶) → ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧))
10461, 103jca 503 . . 3 ((𝑈𝑉𝑥𝐶) → (((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
105104ralrimiva 3150 . 2 (𝑈𝑉 → ∀𝑥𝐶 (((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))
10628, 52, 62, 63, 34issubc2 16694 . 2 (𝑈𝑉 → (𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)) ↔ (𝐽cat (Homf ‘(RingCatALTV‘𝑈)) ∧ ∀𝑥𝐶 (((Id‘(RingCatALTV‘𝑈))‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦𝐶𝑧𝐶𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘(RingCatALTV‘𝑈))𝑧)𝑓) ∈ (𝑥𝐽𝑧)))))
10744, 105, 106mpbir2and 695 1 (𝑈𝑉𝐽 ∈ (Subcat‘(RingCatALTV‘𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2155  wral 3092  Vcvv 3387  cin 3762  wss 3763  cop 4370   class class class wbr 4837   I cid 5212   × cxp 5303  cres 5307   Fn wfn 6090  cfv 6095  (class class class)co 6868  cmpt2 6870  Basecbs 16062  Hom chom 16158  compcco 16159  Catccat 16523  Idccid 16524  Homf chomf 16525  cat cssc 16665  Subcatcsubc 16667  Ringcrg 18743   RingHom crh 18910  RingCatALTVcringcALTV 42566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-cnex 10271  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rmo 3100  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-om 7290  df-1st 7392  df-2nd 7393  df-wrecs 7636  df-recs 7698  df-rdg 7736  df-1o 7790  df-oadd 7794  df-er 7973  df-map 8088  df-pm 8089  df-ixp 8140  df-en 8187  df-dom 8188  df-sdom 8189  df-fin 8190  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-nn 11300  df-2 11358  df-3 11359  df-4 11360  df-5 11361  df-6 11362  df-7 11363  df-8 11364  df-9 11365  df-n0 11554  df-z 11638  df-dec 11754  df-uz 11899  df-fz 12544  df-struct 16064  df-ndx 16065  df-slot 16066  df-base 16068  df-sets 16069  df-plusg 16160  df-hom 16171  df-cco 16172  df-0g 16301  df-cat 16527  df-cid 16528  df-homf 16529  df-ssc 16668  df-subc 16670  df-mgm 17441  df-sgrp 17483  df-mnd 17494  df-mhm 17534  df-grp 17624  df-ghm 17854  df-mgp 18686  df-ur 18698  df-ring 18745  df-rnghom 18913  df-ringcALTV 42568
This theorem is referenced by:  sringcatALTV  42657  crhmsubcALTV  42658  drhmsubcALTV  42660  fldhmsubcALTV  42664
  Copyright terms: Public domain W3C validator