| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | heibor.6 | . . . 4
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) | 
| 2 |  | cmetmet 25320 | . . . 4
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) | 
| 3 |  | metxmet 24344 | . . . 4
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 4 | 1, 2, 3 | 3syl 18 | . . 3
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | 
| 5 |  | heibor.13 | . . . 4
⊢ (𝜑 → 𝑈 ⊆ 𝐽) | 
| 6 |  | heibor.16 | . . . 4
⊢ (𝜑 → 𝑍 ∈ 𝑈) | 
| 7 | 5, 6 | sseldd 3984 | . . 3
⊢ (𝜑 → 𝑍 ∈ 𝐽) | 
| 8 |  | heibor.15 | . . 3
⊢ (𝜑 → 𝑌 ∈ 𝑍) | 
| 9 |  | heibor.1 | . . . 4
⊢ 𝐽 = (MetOpen‘𝐷) | 
| 10 | 9 | mopni2 24506 | . . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑍 ∈ 𝐽 ∧ 𝑌 ∈ 𝑍) → ∃𝑥 ∈ ℝ+ (𝑌(ball‘𝐷)𝑥) ⊆ 𝑍) | 
| 11 | 4, 7, 8, 10 | syl3anc 1373 | . 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ+ (𝑌(ball‘𝐷)𝑥) ⊆ 𝑍) | 
| 12 |  | rphalfcl 13062 | . . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) ∈
ℝ+) | 
| 13 |  | breq2 5147 | . . . . . . . 8
⊢ (𝑟 = (𝑥 / 2) → ((2nd ‘(𝑀‘𝑘)) < 𝑟 ↔ (2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) | 
| 14 | 13 | rexbidv 3179 | . . . . . . 7
⊢ (𝑟 = (𝑥 / 2) → (∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) | 
| 15 |  | heibor.3 | . . . . . . . 8
⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} | 
| 16 |  | heibor.4 | . . . . . . . 8
⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} | 
| 17 |  | heibor.5 | . . . . . . . 8
⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) | 
| 18 |  | heibor.7 | . . . . . . . 8
⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) | 
| 19 |  | heibor.8 | . . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) | 
| 20 |  | heibor.9 | . . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) | 
| 21 |  | heibor.10 | . . . . . . . 8
⊢ (𝜑 → 𝐶𝐺0) | 
| 22 |  | heibor.11 | . . . . . . . 8
⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) | 
| 23 |  | heibor.12 | . . . . . . . 8
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) | 
| 24 | 9, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23 | heiborlem7 37824 | . . . . . . 7
⊢
∀𝑟 ∈
ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 | 
| 25 | 14, 24 | vtoclri 3590 | . . . . . 6
⊢ ((𝑥 / 2) ∈ ℝ+
→ ∃𝑘 ∈
ℕ (2nd ‘(𝑀‘𝑘)) < (𝑥 / 2)) | 
| 26 | 12, 25 | syl 17 | . . . . 5
⊢ (𝑥 ∈ ℝ+
→ ∃𝑘 ∈
ℕ (2nd ‘(𝑀‘𝑘)) < (𝑥 / 2)) | 
| 27 | 26 | adantl 481 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑘 ∈ ℕ
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2)) | 
| 28 |  | nnnn0 12533 | . . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) | 
| 29 | 9, 15, 16, 17, 1, 18, 19, 20, 21, 22 | heiborlem4 37821 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘)𝐺𝑘) | 
| 30 |  | fvex 6919 | . . . . . . . . . 10
⊢ (𝑆‘𝑘) ∈ V | 
| 31 |  | vex 3484 | . . . . . . . . . 10
⊢ 𝑘 ∈ V | 
| 32 | 9, 15, 16, 30, 31 | heiborlem2 37819 | . . . . . . . . 9
⊢ ((𝑆‘𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆‘𝑘) ∈ (𝐹‘𝑘) ∧ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾)) | 
| 33 | 32 | simp3bi 1148 | . . . . . . . 8
⊢ ((𝑆‘𝑘)𝐺𝑘 → ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾) | 
| 34 | 29, 33 | syl 17 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾) | 
| 35 | 28, 34 | sylan2 593 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾) | 
| 36 | 35 | ad2ant2r 747 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾) | 
| 37 | 4 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 38 | 9, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23 | heiborlem5 37822 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 ×
ℝ+)) | 
| 39 | 38 | ffvelcdmda 7104 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑀‘𝑘) ∈ (𝑋 ×
ℝ+)) | 
| 40 | 39 | ad2ant2r 747 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (𝑀‘𝑘) ∈ (𝑋 ×
ℝ+)) | 
| 41 |  | xp1st 8046 | . . . . . . . . . . 11
⊢ ((𝑀‘𝑘) ∈ (𝑋 × ℝ+) →
(1st ‘(𝑀‘𝑘)) ∈ 𝑋) | 
| 42 | 40, 41 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (1st ‘(𝑀‘𝑘)) ∈ 𝑋) | 
| 43 |  | 2nn 12339 | . . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ | 
| 44 |  | nnexpcl 14115 | . . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) | 
| 45 | 43, 28, 44 | sylancr 587 | . . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ →
(2↑𝑘) ∈
ℕ) | 
| 46 | 45 | nnrpd 13075 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ →
(2↑𝑘) ∈
ℝ+) | 
| 47 | 46 | rpreccld 13087 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (1 /
(2↑𝑘)) ∈
ℝ+) | 
| 48 | 47 | ad2antrl 728 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (1 / (2↑𝑘)) ∈
ℝ+) | 
| 49 | 48 | rpxrd 13078 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (1 / (2↑𝑘)) ∈
ℝ*) | 
| 50 |  | xp2nd 8047 | . . . . . . . . . . . 12
⊢ ((𝑀‘𝑘) ∈ (𝑋 × ℝ+) →
(2nd ‘(𝑀‘𝑘)) ∈
ℝ+) | 
| 51 | 40, 50 | syl 17 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (2nd ‘(𝑀‘𝑘)) ∈
ℝ+) | 
| 52 | 51 | rpxrd 13078 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (2nd ‘(𝑀‘𝑘)) ∈
ℝ*) | 
| 53 |  | 1le3 12478 | . . . . . . . . . . . . . 14
⊢ 1 ≤
3 | 
| 54 |  | elrp 13036 | . . . . . . . . . . . . . . 15
⊢
((2↑𝑘) ∈
ℝ+ ↔ ((2↑𝑘) ∈ ℝ ∧ 0 < (2↑𝑘))) | 
| 55 |  | 1re 11261 | . . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ | 
| 56 |  | 3re 12346 | . . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℝ | 
| 57 |  | lediv1 12133 | . . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℝ ∧ 3 ∈ ℝ ∧ ((2↑𝑘) ∈ ℝ ∧ 0 < (2↑𝑘))) → (1 ≤ 3 ↔ (1 /
(2↑𝑘)) ≤ (3 /
(2↑𝑘)))) | 
| 58 | 55, 56, 57 | mp3an12 1453 | . . . . . . . . . . . . . . 15
⊢
(((2↑𝑘) ∈
ℝ ∧ 0 < (2↑𝑘)) → (1 ≤ 3 ↔ (1 / (2↑𝑘)) ≤ (3 / (2↑𝑘)))) | 
| 59 | 54, 58 | sylbi 217 | . . . . . . . . . . . . . 14
⊢
((2↑𝑘) ∈
ℝ+ → (1 ≤ 3 ↔ (1 / (2↑𝑘)) ≤ (3 / (2↑𝑘)))) | 
| 60 | 53, 59 | mpbii 233 | . . . . . . . . . . . . 13
⊢
((2↑𝑘) ∈
ℝ+ → (1 / (2↑𝑘)) ≤ (3 / (2↑𝑘))) | 
| 61 | 46, 60 | syl 17 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (1 /
(2↑𝑘)) ≤ (3 /
(2↑𝑘))) | 
| 62 | 61 | ad2antrl 728 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (1 / (2↑𝑘)) ≤ (3 / (2↑𝑘))) | 
| 63 |  | fveq2 6906 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → (𝑆‘𝑛) = (𝑆‘𝑘)) | 
| 64 |  | oveq2 7439 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘)) | 
| 65 | 64 | oveq2d 7447 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘))) | 
| 66 | 63, 65 | opeq12d 4881 | . . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) | 
| 67 |  | opex 5469 | . . . . . . . . . . . . . . 15
⊢
〈(𝑆‘𝑘), (3 / (2↑𝑘))〉 ∈
V | 
| 68 | 66, 23, 67 | fvmpt 7016 | . . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → (𝑀‘𝑘) = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) | 
| 69 | 68 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ →
(2nd ‘(𝑀‘𝑘)) = (2nd ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉)) | 
| 70 |  | ovex 7464 | . . . . . . . . . . . . . 14
⊢ (3 /
(2↑𝑘)) ∈
V | 
| 71 | 30, 70 | op2nd 8023 | . . . . . . . . . . . . 13
⊢
(2nd ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) = (3 / (2↑𝑘)) | 
| 72 | 69, 71 | eqtrdi 2793 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ →
(2nd ‘(𝑀‘𝑘)) = (3 / (2↑𝑘))) | 
| 73 | 72 | ad2antrl 728 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (2nd ‘(𝑀‘𝑘)) = (3 / (2↑𝑘))) | 
| 74 | 62, 73 | breqtrrd 5171 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (1 / (2↑𝑘)) ≤ (2nd
‘(𝑀‘𝑘))) | 
| 75 |  | ssbl 24433 | . . . . . . . . . 10
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘(𝑀‘𝑘)) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧
(2nd ‘(𝑀‘𝑘)) ∈ ℝ*) ∧ (1 /
(2↑𝑘)) ≤
(2nd ‘(𝑀‘𝑘))) → ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑘))) ⊆ ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘)))) | 
| 76 | 37, 42, 49, 52, 74, 75 | syl221anc 1383 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑘))) ⊆ ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘)))) | 
| 77 | 28 | ad2antrl 728 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → 𝑘 ∈ ℕ0) | 
| 78 |  | oveq1 7438 | . . . . . . . . . . . 12
⊢ (𝑧 = (1st ‘(𝑀‘𝑘)) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑚)))) | 
| 79 |  | oveq2 7439 | . . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘)) | 
| 80 | 79 | oveq2d 7447 | . . . . . . . . . . . . 13
⊢ (𝑚 = 𝑘 → (1 / (2↑𝑚)) = (1 / (2↑𝑘))) | 
| 81 | 80 | oveq2d 7447 | . . . . . . . . . . . 12
⊢ (𝑚 = 𝑘 → ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑚))) = ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑘)))) | 
| 82 |  | ovex 7464 | . . . . . . . . . . . 12
⊢
((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑘))) ∈ V | 
| 83 | 78, 81, 17, 82 | ovmpo 7593 | . . . . . . . . . . 11
⊢
(((1st ‘(𝑀‘𝑘)) ∈ 𝑋 ∧ 𝑘 ∈ ℕ0) →
((1st ‘(𝑀‘𝑘))𝐵𝑘) = ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑘)))) | 
| 84 | 42, 77, 83 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀‘𝑘))𝐵𝑘) = ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑘)))) | 
| 85 | 68 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ →
(1st ‘(𝑀‘𝑘)) = (1st ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉)) | 
| 86 | 30, 70 | op1st 8022 | . . . . . . . . . . . . 13
⊢
(1st ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) = (𝑆‘𝑘) | 
| 87 | 85, 86 | eqtrdi 2793 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ →
(1st ‘(𝑀‘𝑘)) = (𝑆‘𝑘)) | 
| 88 | 87 | ad2antrl 728 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (1st ‘(𝑀‘𝑘)) = (𝑆‘𝑘)) | 
| 89 | 88 | oveq1d 7446 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀‘𝑘))𝐵𝑘) = ((𝑆‘𝑘)𝐵𝑘)) | 
| 90 | 84, 89 | eqtr3d 2779 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑘))) = ((𝑆‘𝑘)𝐵𝑘)) | 
| 91 |  | df-ov 7434 | . . . . . . . . . 10
⊢
((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘))) = ((ball‘𝐷)‘〈(1st ‘(𝑀‘𝑘)), (2nd ‘(𝑀‘𝑘))〉) | 
| 92 |  | 1st2nd2 8053 | . . . . . . . . . . . 12
⊢ ((𝑀‘𝑘) ∈ (𝑋 × ℝ+) → (𝑀‘𝑘) = 〈(1st ‘(𝑀‘𝑘)), (2nd ‘(𝑀‘𝑘))〉) | 
| 93 | 40, 92 | syl 17 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (𝑀‘𝑘) = 〈(1st ‘(𝑀‘𝑘)), (2nd ‘(𝑀‘𝑘))〉) | 
| 94 | 93 | fveq2d 6910 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((ball‘𝐷)‘(𝑀‘𝑘)) = ((ball‘𝐷)‘〈(1st ‘(𝑀‘𝑘)), (2nd ‘(𝑀‘𝑘))〉)) | 
| 95 | 91, 94 | eqtr4id 2796 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘))) = ((ball‘𝐷)‘(𝑀‘𝑘))) | 
| 96 | 76, 90, 95 | 3sstr3d 4038 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((𝑆‘𝑘)𝐵𝑘) ⊆ ((ball‘𝐷)‘(𝑀‘𝑘))) | 
| 97 | 9 | mopntop 24450 | . . . . . . . . . . 11
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) | 
| 98 | 37, 97 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → 𝐽 ∈ Top) | 
| 99 |  | blssm 24428 | . . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘(𝑀‘𝑘)) ∈ 𝑋 ∧ (2nd ‘(𝑀‘𝑘)) ∈ ℝ*) →
((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘))) ⊆ 𝑋) | 
| 100 | 37, 42, 52, 99 | syl3anc 1373 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘))) ⊆ 𝑋) | 
| 101 | 9 | mopnuni 24451 | . . . . . . . . . . . 12
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) | 
| 102 | 37, 101 | syl 17 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → 𝑋 = ∪ 𝐽) | 
| 103 | 100, 95, 102 | 3sstr3d 4038 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((ball‘𝐷)‘(𝑀‘𝑘)) ⊆ ∪ 𝐽) | 
| 104 |  | eqid 2737 | . . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 105 | 104 | sscls 23064 | . . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧
((ball‘𝐷)‘(𝑀‘𝑘)) ⊆ ∪ 𝐽) → ((ball‘𝐷)‘(𝑀‘𝑘)) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘)))) | 
| 106 | 98, 103, 105 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((ball‘𝐷)‘(𝑀‘𝑘)) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘)))) | 
| 107 | 95 | fveq2d 6910 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘)))) = ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘)))) | 
| 108 | 12 | ad2antlr 727 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (𝑥 / 2) ∈
ℝ+) | 
| 109 | 108 | rpxrd 13078 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (𝑥 / 2) ∈
ℝ*) | 
| 110 |  | simprr 773 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (2nd ‘(𝑀‘𝑘)) < (𝑥 / 2)) | 
| 111 | 9 | blsscls 24520 | . . . . . . . . . . . 12
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘(𝑀‘𝑘)) ∈ 𝑋) ∧ ((2nd ‘(𝑀‘𝑘)) ∈ ℝ* ∧ (𝑥 / 2) ∈ ℝ*
∧ (2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘)))) ⊆ ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(𝑥 / 2))) | 
| 112 | 37, 42, 52, 109, 110, 111 | syl23anc 1379 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘)))) ⊆ ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(𝑥 / 2))) | 
| 113 | 107, 112 | eqsstrrd 4019 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘))) ⊆ ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(𝑥 / 2))) | 
| 114 |  | rpre 13043 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) | 
| 115 | 114 | ad2antlr 727 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → 𝑥 ∈ ℝ) | 
| 116 |  | heibor.17 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (1st ∘
𝑀)(⇝𝑡‘𝐽)𝑌) | 
| 117 | 9, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23 | heiborlem6 37823 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑡 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑡 + 1))) ⊆ ((ball‘𝐷)‘(𝑀‘𝑡))) | 
| 118 | 4, 38, 117, 9 | caublcls 25343 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (1st ∘
𝑀)(⇝𝑡‘𝐽)𝑌 ∧ 𝑘 ∈ ℕ) → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘)))) | 
| 119 | 118 | 3expia 1122 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (1st ∘
𝑀)(⇝𝑡‘𝐽)𝑌) → (𝑘 ∈ ℕ → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘))))) | 
| 120 | 116, 119 | mpdan 687 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ ℕ → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘))))) | 
| 121 | 120 | imp 406 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘)))) | 
| 122 | 121 | ad2ant2r 747 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘)))) | 
| 123 | 113, 122 | sseldd 3984 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → 𝑌 ∈ ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(𝑥 / 2))) | 
| 124 |  | blhalf 24415 | . . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘(𝑀‘𝑘)) ∈ 𝑋) ∧ (𝑥 ∈ ℝ ∧ 𝑌 ∈ ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(𝑥 / 2)))) → ((1st
‘(𝑀‘𝑘))(ball‘𝐷)(𝑥 / 2)) ⊆ (𝑌(ball‘𝐷)𝑥)) | 
| 125 | 37, 42, 115, 123, 124 | syl22anc 839 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(𝑥 / 2)) ⊆ (𝑌(ball‘𝐷)𝑥)) | 
| 126 | 113, 125 | sstrd 3994 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘))) ⊆ (𝑌(ball‘𝐷)𝑥)) | 
| 127 | 106, 126 | sstrd 3994 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((ball‘𝐷)‘(𝑀‘𝑘)) ⊆ (𝑌(ball‘𝐷)𝑥)) | 
| 128 | 96, 127 | sstrd 3994 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((𝑆‘𝑘)𝐵𝑘) ⊆ (𝑌(ball‘𝐷)𝑥)) | 
| 129 |  | sstr2 3990 | . . . . . . 7
⊢ (((𝑆‘𝑘)𝐵𝑘) ⊆ (𝑌(ball‘𝐷)𝑥) → ((𝑌(ball‘𝐷)𝑥) ⊆ 𝑍 → ((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍)) | 
| 130 | 128, 129 | syl 17 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((𝑌(ball‘𝐷)𝑥) ⊆ 𝑍 → ((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍)) | 
| 131 |  | unisng 4925 | . . . . . . . . . . . . 13
⊢ (𝑍 ∈ 𝑈 → ∪ {𝑍} = 𝑍) | 
| 132 | 6, 131 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → ∪ {𝑍}
= 𝑍) | 
| 133 | 132 | sseq2d 4016 | . . . . . . . . . . 11
⊢ (𝜑 → (((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ {𝑍} ↔ ((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍)) | 
| 134 | 133 | biimpar 477 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍) → ((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ {𝑍}) | 
| 135 | 6 | snssd 4809 | . . . . . . . . . . . . 13
⊢ (𝜑 → {𝑍} ⊆ 𝑈) | 
| 136 |  | snex 5436 | . . . . . . . . . . . . . 14
⊢ {𝑍} ∈ V | 
| 137 | 136 | elpw 4604 | . . . . . . . . . . . . 13
⊢ ({𝑍} ∈ 𝒫 𝑈 ↔ {𝑍} ⊆ 𝑈) | 
| 138 | 135, 137 | sylibr 234 | . . . . . . . . . . . 12
⊢ (𝜑 → {𝑍} ∈ 𝒫 𝑈) | 
| 139 |  | snfi 9083 | . . . . . . . . . . . . 13
⊢ {𝑍} ∈ Fin | 
| 140 | 139 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → {𝑍} ∈ Fin) | 
| 141 | 138, 140 | elind 4200 | . . . . . . . . . . 11
⊢ (𝜑 → {𝑍} ∈ (𝒫 𝑈 ∩ Fin)) | 
| 142 |  | unieq 4918 | . . . . . . . . . . . . 13
⊢ (𝑣 = {𝑍} → ∪ 𝑣 = ∪
{𝑍}) | 
| 143 | 142 | sseq2d 4016 | . . . . . . . . . . . 12
⊢ (𝑣 = {𝑍} → (((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣 ↔ ((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ {𝑍})) | 
| 144 | 143 | rspcev 3622 | . . . . . . . . . . 11
⊢ (({𝑍} ∈ (𝒫 𝑈 ∩ Fin) ∧ ((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ {𝑍}) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣) | 
| 145 | 141, 144 | sylan 580 | . . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ {𝑍}) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣) | 
| 146 | 134, 145 | syldan 591 | . . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣) | 
| 147 |  | ovex 7464 | . . . . . . . . . . 11
⊢ ((𝑆‘𝑘)𝐵𝑘) ∈ V | 
| 148 |  | sseq1 4009 | . . . . . . . . . . . . 13
⊢ (𝑢 = ((𝑆‘𝑘)𝐵𝑘) → (𝑢 ⊆ ∪ 𝑣 ↔ ((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣)) | 
| 149 | 148 | rexbidv 3179 | . . . . . . . . . . . 12
⊢ (𝑢 = ((𝑆‘𝑘)𝐵𝑘) → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣)) | 
| 150 | 149 | notbid 318 | . . . . . . . . . . 11
⊢ (𝑢 = ((𝑆‘𝑘)𝐵𝑘) → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣)) | 
| 151 | 147, 150,
15 | elab2 3682 | . . . . . . . . . 10
⊢ (((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣) | 
| 152 | 151 | con2bii 357 | . . . . . . . . 9
⊢
(∃𝑣 ∈
(𝒫 𝑈 ∩
Fin)((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣 ↔ ¬ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾) | 
| 153 | 146, 152 | sylib 218 | . . . . . . . 8
⊢ ((𝜑 ∧ ((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍) → ¬ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾) | 
| 154 | 153 | ex 412 | . . . . . . 7
⊢ (𝜑 → (((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍 → ¬ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾)) | 
| 155 | 154 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍 → ¬ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾)) | 
| 156 | 130, 155 | syld 47 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((𝑌(ball‘𝐷)𝑥) ⊆ 𝑍 → ¬ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾)) | 
| 157 | 36, 156 | mt2d 136 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ¬ (𝑌(ball‘𝐷)𝑥) ⊆ 𝑍) | 
| 158 | 27, 157 | rexlimddv 3161 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ¬
(𝑌(ball‘𝐷)𝑥) ⊆ 𝑍) | 
| 159 | 158 | nrexdv 3149 | . 2
⊢ (𝜑 → ¬ ∃𝑥 ∈ ℝ+
(𝑌(ball‘𝐷)𝑥) ⊆ 𝑍) | 
| 160 | 11, 159 | pm2.21dd 195 | 1
⊢ (𝜑 → 𝜓) |