Step | Hyp | Ref
| Expression |
1 | | heibor.6 |
. . . 4
β’ (π β π· β (CMetβπ)) |
2 | | cmetmet 24794 |
. . . 4
β’ (π· β (CMetβπ) β π· β (Metβπ)) |
3 | | metxmet 23831 |
. . . 4
β’ (π· β (Metβπ) β π· β (βMetβπ)) |
4 | 1, 2, 3 | 3syl 18 |
. . 3
β’ (π β π· β (βMetβπ)) |
5 | | heibor.13 |
. . . 4
β’ (π β π β π½) |
6 | | heibor.16 |
. . . 4
β’ (π β π β π) |
7 | 5, 6 | sseldd 3982 |
. . 3
β’ (π β π β π½) |
8 | | heibor.15 |
. . 3
β’ (π β π β π) |
9 | | heibor.1 |
. . . 4
β’ π½ = (MetOpenβπ·) |
10 | 9 | mopni2 23993 |
. . 3
β’ ((π· β (βMetβπ) β§ π β π½ β§ π β π) β βπ₯ β β+ (π(ballβπ·)π₯) β π) |
11 | 4, 7, 8, 10 | syl3anc 1371 |
. 2
β’ (π β βπ₯ β β+ (π(ballβπ·)π₯) β π) |
12 | | rphalfcl 12997 |
. . . . . 6
β’ (π₯ β β+
β (π₯ / 2) β
β+) |
13 | | breq2 5151 |
. . . . . . . 8
β’ (π = (π₯ / 2) β ((2nd β(πβπ)) < π β (2nd β(πβπ)) < (π₯ / 2))) |
14 | 13 | rexbidv 3178 |
. . . . . . 7
β’ (π = (π₯ / 2) β (βπ β β (2nd β(πβπ)) < π β βπ β β (2nd β(πβπ)) < (π₯ / 2))) |
15 | | heibor.3 |
. . . . . . . 8
β’ πΎ = {π’ β£ Β¬ βπ£ β (π« π β© Fin)π’ β βͺ π£} |
16 | | heibor.4 |
. . . . . . . 8
β’ πΊ = {β¨π¦, πβ© β£ (π β β0 β§ π¦ β (πΉβπ) β§ (π¦π΅π) β πΎ)} |
17 | | heibor.5 |
. . . . . . . 8
β’ π΅ = (π§ β π, π β β0 β¦ (π§(ballβπ·)(1 / (2βπ)))) |
18 | | heibor.7 |
. . . . . . . 8
β’ (π β πΉ:β0βΆ(π« π β© Fin)) |
19 | | heibor.8 |
. . . . . . . 8
β’ (π β βπ β β0 π = βͺ π¦ β (πΉβπ)(π¦π΅π)) |
20 | | heibor.9 |
. . . . . . . 8
β’ (π β βπ₯ β πΊ ((πβπ₯)πΊ((2nd βπ₯) + 1) β§ ((π΅βπ₯) β© ((πβπ₯)π΅((2nd βπ₯) + 1))) β πΎ)) |
21 | | heibor.10 |
. . . . . . . 8
β’ (π β πΆπΊ0) |
22 | | heibor.11 |
. . . . . . . 8
β’ π = seq0(π, (π β β0 β¦ if(π = 0, πΆ, (π β 1)))) |
23 | | heibor.12 |
. . . . . . . 8
β’ π = (π β β β¦ β¨(πβπ), (3 / (2βπ))β©) |
24 | 9, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23 | heiborlem7 36673 |
. . . . . . 7
β’
βπ β
β+ βπ β β (2nd β(πβπ)) < π |
25 | 14, 24 | vtoclri 3576 |
. . . . . 6
β’ ((π₯ / 2) β β+
β βπ β
β (2nd β(πβπ)) < (π₯ / 2)) |
26 | 12, 25 | syl 17 |
. . . . 5
β’ (π₯ β β+
β βπ β
β (2nd β(πβπ)) < (π₯ / 2)) |
27 | 26 | adantl 482 |
. . . 4
β’ ((π β§ π₯ β β+) β
βπ β β
(2nd β(πβπ)) < (π₯ / 2)) |
28 | | nnnn0 12475 |
. . . . . . 7
β’ (π β β β π β
β0) |
29 | 9, 15, 16, 17, 1, 18, 19, 20, 21, 22 | heiborlem4 36670 |
. . . . . . . 8
β’ ((π β§ π β β0) β (πβπ)πΊπ) |
30 | | fvex 6901 |
. . . . . . . . . 10
β’ (πβπ) β V |
31 | | vex 3478 |
. . . . . . . . . 10
β’ π β V |
32 | 9, 15, 16, 30, 31 | heiborlem2 36668 |
. . . . . . . . 9
β’ ((πβπ)πΊπ β (π β β0 β§ (πβπ) β (πΉβπ) β§ ((πβπ)π΅π) β πΎ)) |
33 | 32 | simp3bi 1147 |
. . . . . . . 8
β’ ((πβπ)πΊπ β ((πβπ)π΅π) β πΎ) |
34 | 29, 33 | syl 17 |
. . . . . . 7
β’ ((π β§ π β β0) β ((πβπ)π΅π) β πΎ) |
35 | 28, 34 | sylan2 593 |
. . . . . 6
β’ ((π β§ π β β) β ((πβπ)π΅π) β πΎ) |
36 | 35 | ad2ant2r 745 |
. . . . 5
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((πβπ)π΅π) β πΎ) |
37 | 4 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β π· β (βMetβπ)) |
38 | 9, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23 | heiborlem5 36671 |
. . . . . . . . . . . . 13
β’ (π β π:ββΆ(π Γ
β+)) |
39 | 38 | ffvelcdmda 7083 |
. . . . . . . . . . . 12
β’ ((π β§ π β β) β (πβπ) β (π Γ
β+)) |
40 | 39 | ad2ant2r 745 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (πβπ) β (π Γ
β+)) |
41 | | xp1st 8003 |
. . . . . . . . . . 11
β’ ((πβπ) β (π Γ β+) β
(1st β(πβπ)) β π) |
42 | 40, 41 | syl 17 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (1st β(πβπ)) β π) |
43 | | 2nn 12281 |
. . . . . . . . . . . . . . 15
β’ 2 β
β |
44 | | nnexpcl 14036 |
. . . . . . . . . . . . . . 15
β’ ((2
β β β§ π
β β0) β (2βπ) β β) |
45 | 43, 28, 44 | sylancr 587 |
. . . . . . . . . . . . . 14
β’ (π β β β
(2βπ) β
β) |
46 | 45 | nnrpd 13010 |
. . . . . . . . . . . . 13
β’ (π β β β
(2βπ) β
β+) |
47 | 46 | rpreccld 13022 |
. . . . . . . . . . . 12
β’ (π β β β (1 /
(2βπ)) β
β+) |
48 | 47 | ad2antrl 726 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (1 / (2βπ)) β
β+) |
49 | 48 | rpxrd 13013 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (1 / (2βπ)) β
β*) |
50 | | xp2nd 8004 |
. . . . . . . . . . . 12
β’ ((πβπ) β (π Γ β+) β
(2nd β(πβπ)) β
β+) |
51 | 40, 50 | syl 17 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (2nd β(πβπ)) β
β+) |
52 | 51 | rpxrd 13013 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (2nd β(πβπ)) β
β*) |
53 | | 1le3 12420 |
. . . . . . . . . . . . . 14
β’ 1 β€
3 |
54 | | elrp 12972 |
. . . . . . . . . . . . . . 15
β’
((2βπ) β
β+ β ((2βπ) β β β§ 0 < (2βπ))) |
55 | | 1re 11210 |
. . . . . . . . . . . . . . . 16
β’ 1 β
β |
56 | | 3re 12288 |
. . . . . . . . . . . . . . . 16
β’ 3 β
β |
57 | | lediv1 12075 |
. . . . . . . . . . . . . . . 16
β’ ((1
β β β§ 3 β β β§ ((2βπ) β β β§ 0 < (2βπ))) β (1 β€ 3 β (1 /
(2βπ)) β€ (3 /
(2βπ)))) |
58 | 55, 56, 57 | mp3an12 1451 |
. . . . . . . . . . . . . . 15
β’
(((2βπ) β
β β§ 0 < (2βπ)) β (1 β€ 3 β (1 / (2βπ)) β€ (3 / (2βπ)))) |
59 | 54, 58 | sylbi 216 |
. . . . . . . . . . . . . 14
β’
((2βπ) β
β+ β (1 β€ 3 β (1 / (2βπ)) β€ (3 / (2βπ)))) |
60 | 53, 59 | mpbii 232 |
. . . . . . . . . . . . 13
β’
((2βπ) β
β+ β (1 / (2βπ)) β€ (3 / (2βπ))) |
61 | 46, 60 | syl 17 |
. . . . . . . . . . . 12
β’ (π β β β (1 /
(2βπ)) β€ (3 /
(2βπ))) |
62 | 61 | ad2antrl 726 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (1 / (2βπ)) β€ (3 / (2βπ))) |
63 | | fveq2 6888 |
. . . . . . . . . . . . . . . 16
β’ (π = π β (πβπ) = (πβπ)) |
64 | | oveq2 7413 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β (2βπ) = (2βπ)) |
65 | 64 | oveq2d 7421 |
. . . . . . . . . . . . . . . 16
β’ (π = π β (3 / (2βπ)) = (3 / (2βπ))) |
66 | 63, 65 | opeq12d 4880 |
. . . . . . . . . . . . . . 15
β’ (π = π β β¨(πβπ), (3 / (2βπ))β© = β¨(πβπ), (3 / (2βπ))β©) |
67 | | opex 5463 |
. . . . . . . . . . . . . . 15
β’
β¨(πβπ), (3 / (2βπ))β© β
V |
68 | 66, 23, 67 | fvmpt 6995 |
. . . . . . . . . . . . . 14
β’ (π β β β (πβπ) = β¨(πβπ), (3 / (2βπ))β©) |
69 | 68 | fveq2d 6892 |
. . . . . . . . . . . . 13
β’ (π β β β
(2nd β(πβπ)) = (2nd ββ¨(πβπ), (3 / (2βπ))β©)) |
70 | | ovex 7438 |
. . . . . . . . . . . . . 14
β’ (3 /
(2βπ)) β
V |
71 | 30, 70 | op2nd 7980 |
. . . . . . . . . . . . 13
β’
(2nd ββ¨(πβπ), (3 / (2βπ))β©) = (3 / (2βπ)) |
72 | 69, 71 | eqtrdi 2788 |
. . . . . . . . . . . 12
β’ (π β β β
(2nd β(πβπ)) = (3 / (2βπ))) |
73 | 72 | ad2antrl 726 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (2nd β(πβπ)) = (3 / (2βπ))) |
74 | 62, 73 | breqtrrd 5175 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (1 / (2βπ)) β€ (2nd
β(πβπ))) |
75 | | ssbl 23920 |
. . . . . . . . . 10
β’ (((π· β (βMetβπ) β§ (1st
β(πβπ)) β π) β§ ((1 / (2βπ)) β β* β§
(2nd β(πβπ)) β β*) β§ (1 /
(2βπ)) β€
(2nd β(πβπ))) β ((1st β(πβπ))(ballβπ·)(1 / (2βπ))) β ((1st β(πβπ))(ballβπ·)(2nd β(πβπ)))) |
76 | 37, 42, 49, 52, 74, 75 | syl221anc 1381 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((1st β(πβπ))(ballβπ·)(1 / (2βπ))) β ((1st β(πβπ))(ballβπ·)(2nd β(πβπ)))) |
77 | 28 | ad2antrl 726 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β π β β0) |
78 | | oveq1 7412 |
. . . . . . . . . . . 12
β’ (π§ = (1st β(πβπ)) β (π§(ballβπ·)(1 / (2βπ))) = ((1st β(πβπ))(ballβπ·)(1 / (2βπ)))) |
79 | | oveq2 7413 |
. . . . . . . . . . . . . 14
β’ (π = π β (2βπ) = (2βπ)) |
80 | 79 | oveq2d 7421 |
. . . . . . . . . . . . 13
β’ (π = π β (1 / (2βπ)) = (1 / (2βπ))) |
81 | 80 | oveq2d 7421 |
. . . . . . . . . . . 12
β’ (π = π β ((1st β(πβπ))(ballβπ·)(1 / (2βπ))) = ((1st β(πβπ))(ballβπ·)(1 / (2βπ)))) |
82 | | ovex 7438 |
. . . . . . . . . . . 12
β’
((1st β(πβπ))(ballβπ·)(1 / (2βπ))) β V |
83 | 78, 81, 17, 82 | ovmpo 7564 |
. . . . . . . . . . 11
β’
(((1st β(πβπ)) β π β§ π β β0) β
((1st β(πβπ))π΅π) = ((1st β(πβπ))(ballβπ·)(1 / (2βπ)))) |
84 | 42, 77, 83 | syl2anc 584 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((1st β(πβπ))π΅π) = ((1st β(πβπ))(ballβπ·)(1 / (2βπ)))) |
85 | 68 | fveq2d 6892 |
. . . . . . . . . . . . 13
β’ (π β β β
(1st β(πβπ)) = (1st ββ¨(πβπ), (3 / (2βπ))β©)) |
86 | 30, 70 | op1st 7979 |
. . . . . . . . . . . . 13
β’
(1st ββ¨(πβπ), (3 / (2βπ))β©) = (πβπ) |
87 | 85, 86 | eqtrdi 2788 |
. . . . . . . . . . . 12
β’ (π β β β
(1st β(πβπ)) = (πβπ)) |
88 | 87 | ad2antrl 726 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (1st β(πβπ)) = (πβπ)) |
89 | 88 | oveq1d 7420 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((1st β(πβπ))π΅π) = ((πβπ)π΅π)) |
90 | 84, 89 | eqtr3d 2774 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((1st β(πβπ))(ballβπ·)(1 / (2βπ))) = ((πβπ)π΅π)) |
91 | | df-ov 7408 |
. . . . . . . . . 10
β’
((1st β(πβπ))(ballβπ·)(2nd β(πβπ))) = ((ballβπ·)ββ¨(1st β(πβπ)), (2nd β(πβπ))β©) |
92 | | 1st2nd2 8010 |
. . . . . . . . . . . 12
β’ ((πβπ) β (π Γ β+) β (πβπ) = β¨(1st β(πβπ)), (2nd β(πβπ))β©) |
93 | 40, 92 | syl 17 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (πβπ) = β¨(1st β(πβπ)), (2nd β(πβπ))β©) |
94 | 93 | fveq2d 6892 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((ballβπ·)β(πβπ)) = ((ballβπ·)ββ¨(1st β(πβπ)), (2nd β(πβπ))β©)) |
95 | 91, 94 | eqtr4id 2791 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((1st β(πβπ))(ballβπ·)(2nd β(πβπ))) = ((ballβπ·)β(πβπ))) |
96 | 76, 90, 95 | 3sstr3d 4027 |
. . . . . . . 8
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((πβπ)π΅π) β ((ballβπ·)β(πβπ))) |
97 | 9 | mopntop 23937 |
. . . . . . . . . . 11
β’ (π· β (βMetβπ) β π½ β Top) |
98 | 37, 97 | syl 17 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β π½ β Top) |
99 | | blssm 23915 |
. . . . . . . . . . . 12
β’ ((π· β (βMetβπ) β§ (1st
β(πβπ)) β π β§ (2nd β(πβπ)) β β*) β
((1st β(πβπ))(ballβπ·)(2nd β(πβπ))) β π) |
100 | 37, 42, 52, 99 | syl3anc 1371 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((1st β(πβπ))(ballβπ·)(2nd β(πβπ))) β π) |
101 | 9 | mopnuni 23938 |
. . . . . . . . . . . 12
β’ (π· β (βMetβπ) β π = βͺ π½) |
102 | 37, 101 | syl 17 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β π = βͺ π½) |
103 | 100, 95, 102 | 3sstr3d 4027 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((ballβπ·)β(πβπ)) β βͺ π½) |
104 | | eqid 2732 |
. . . . . . . . . . 11
β’ βͺ π½ =
βͺ π½ |
105 | 104 | sscls 22551 |
. . . . . . . . . 10
β’ ((π½ β Top β§
((ballβπ·)β(πβπ)) β βͺ π½) β ((ballβπ·)β(πβπ)) β ((clsβπ½)β((ballβπ·)β(πβπ)))) |
106 | 98, 103, 105 | syl2anc 584 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((ballβπ·)β(πβπ)) β ((clsβπ½)β((ballβπ·)β(πβπ)))) |
107 | 95 | fveq2d 6892 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((clsβπ½)β((1st β(πβπ))(ballβπ·)(2nd β(πβπ)))) = ((clsβπ½)β((ballβπ·)β(πβπ)))) |
108 | 12 | ad2antlr 725 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (π₯ / 2) β
β+) |
109 | 108 | rpxrd 13013 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (π₯ / 2) β
β*) |
110 | | simprr 771 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (2nd β(πβπ)) < (π₯ / 2)) |
111 | 9 | blsscls 24007 |
. . . . . . . . . . . 12
β’ (((π· β (βMetβπ) β§ (1st
β(πβπ)) β π) β§ ((2nd β(πβπ)) β β* β§ (π₯ / 2) β β*
β§ (2nd β(πβπ)) < (π₯ / 2))) β ((clsβπ½)β((1st β(πβπ))(ballβπ·)(2nd β(πβπ)))) β ((1st β(πβπ))(ballβπ·)(π₯ / 2))) |
112 | 37, 42, 52, 109, 110, 111 | syl23anc 1377 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((clsβπ½)β((1st β(πβπ))(ballβπ·)(2nd β(πβπ)))) β ((1st β(πβπ))(ballβπ·)(π₯ / 2))) |
113 | 107, 112 | eqsstrrd 4020 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((clsβπ½)β((ballβπ·)β(πβπ))) β ((1st β(πβπ))(ballβπ·)(π₯ / 2))) |
114 | | rpre 12978 |
. . . . . . . . . . . 12
β’ (π₯ β β+
β π₯ β
β) |
115 | 114 | ad2antlr 725 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β π₯ β β) |
116 | | heibor.17 |
. . . . . . . . . . . . . . 15
β’ (π β (1st β
π)(βπ‘βπ½)π) |
117 | 9, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23 | heiborlem6 36672 |
. . . . . . . . . . . . . . . . 17
β’ (π β βπ‘ β β ((ballβπ·)β(πβ(π‘ + 1))) β ((ballβπ·)β(πβπ‘))) |
118 | 4, 38, 117, 9 | caublcls 24817 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ (1st β
π)(βπ‘βπ½)π β§ π β β) β π β ((clsβπ½)β((ballβπ·)β(πβπ)))) |
119 | 118 | 3expia 1121 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (1st β
π)(βπ‘βπ½)π) β (π β β β π β ((clsβπ½)β((ballβπ·)β(πβπ))))) |
120 | 116, 119 | mpdan 685 |
. . . . . . . . . . . . . 14
β’ (π β (π β β β π β ((clsβπ½)β((ballβπ·)β(πβπ))))) |
121 | 120 | imp 407 |
. . . . . . . . . . . . 13
β’ ((π β§ π β β) β π β ((clsβπ½)β((ballβπ·)β(πβπ)))) |
122 | 121 | ad2ant2r 745 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β π β ((clsβπ½)β((ballβπ·)β(πβπ)))) |
123 | 113, 122 | sseldd 3982 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β π β ((1st β(πβπ))(ballβπ·)(π₯ / 2))) |
124 | | blhalf 23902 |
. . . . . . . . . . 11
β’ (((π· β (βMetβπ) β§ (1st
β(πβπ)) β π) β§ (π₯ β β β§ π β ((1st β(πβπ))(ballβπ·)(π₯ / 2)))) β ((1st
β(πβπ))(ballβπ·)(π₯ / 2)) β (π(ballβπ·)π₯)) |
125 | 37, 42, 115, 123, 124 | syl22anc 837 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((1st β(πβπ))(ballβπ·)(π₯ / 2)) β (π(ballβπ·)π₯)) |
126 | 113, 125 | sstrd 3991 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((clsβπ½)β((ballβπ·)β(πβπ))) β (π(ballβπ·)π₯)) |
127 | 106, 126 | sstrd 3991 |
. . . . . . . 8
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((ballβπ·)β(πβπ)) β (π(ballβπ·)π₯)) |
128 | 96, 127 | sstrd 3991 |
. . . . . . 7
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((πβπ)π΅π) β (π(ballβπ·)π₯)) |
129 | | sstr2 3988 |
. . . . . . 7
β’ (((πβπ)π΅π) β (π(ballβπ·)π₯) β ((π(ballβπ·)π₯) β π β ((πβπ)π΅π) β π)) |
130 | 128, 129 | syl 17 |
. . . . . 6
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((π(ballβπ·)π₯) β π β ((πβπ)π΅π) β π)) |
131 | | unisng 4928 |
. . . . . . . . . . . . 13
β’ (π β π β βͺ {π} = π) |
132 | 6, 131 | syl 17 |
. . . . . . . . . . . 12
β’ (π β βͺ {π}
= π) |
133 | 132 | sseq2d 4013 |
. . . . . . . . . . 11
β’ (π β (((πβπ)π΅π) β βͺ {π} β ((πβπ)π΅π) β π)) |
134 | 133 | biimpar 478 |
. . . . . . . . . 10
β’ ((π β§ ((πβπ)π΅π) β π) β ((πβπ)π΅π) β βͺ {π}) |
135 | 6 | snssd 4811 |
. . . . . . . . . . . . 13
β’ (π β {π} β π) |
136 | | snex 5430 |
. . . . . . . . . . . . . 14
β’ {π} β V |
137 | 136 | elpw 4605 |
. . . . . . . . . . . . 13
β’ ({π} β π« π β {π} β π) |
138 | 135, 137 | sylibr 233 |
. . . . . . . . . . . 12
β’ (π β {π} β π« π) |
139 | | snfi 9040 |
. . . . . . . . . . . . 13
β’ {π} β Fin |
140 | 139 | a1i 11 |
. . . . . . . . . . . 12
β’ (π β {π} β Fin) |
141 | 138, 140 | elind 4193 |
. . . . . . . . . . 11
β’ (π β {π} β (π« π β© Fin)) |
142 | | unieq 4918 |
. . . . . . . . . . . . 13
β’ (π£ = {π} β βͺ π£ = βͺ
{π}) |
143 | 142 | sseq2d 4013 |
. . . . . . . . . . . 12
β’ (π£ = {π} β (((πβπ)π΅π) β βͺ π£ β ((πβπ)π΅π) β βͺ {π})) |
144 | 143 | rspcev 3612 |
. . . . . . . . . . 11
β’ (({π} β (π« π β© Fin) β§ ((πβπ)π΅π) β βͺ {π}) β βπ£ β (π« π β© Fin)((πβπ)π΅π) β βͺ π£) |
145 | 141, 144 | sylan 580 |
. . . . . . . . . 10
β’ ((π β§ ((πβπ)π΅π) β βͺ {π}) β βπ£ β (π« π β© Fin)((πβπ)π΅π) β βͺ π£) |
146 | 134, 145 | syldan 591 |
. . . . . . . . 9
β’ ((π β§ ((πβπ)π΅π) β π) β βπ£ β (π« π β© Fin)((πβπ)π΅π) β βͺ π£) |
147 | | ovex 7438 |
. . . . . . . . . . 11
β’ ((πβπ)π΅π) β V |
148 | | sseq1 4006 |
. . . . . . . . . . . . 13
β’ (π’ = ((πβπ)π΅π) β (π’ β βͺ π£ β ((πβπ)π΅π) β βͺ π£)) |
149 | 148 | rexbidv 3178 |
. . . . . . . . . . . 12
β’ (π’ = ((πβπ)π΅π) β (βπ£ β (π« π β© Fin)π’ β βͺ π£ β βπ£ β (π« π β© Fin)((πβπ)π΅π) β βͺ π£)) |
150 | 149 | notbid 317 |
. . . . . . . . . . 11
β’ (π’ = ((πβπ)π΅π) β (Β¬ βπ£ β (π« π β© Fin)π’ β βͺ π£ β Β¬ βπ£ β (π« π β© Fin)((πβπ)π΅π) β βͺ π£)) |
151 | 147, 150,
15 | elab2 3671 |
. . . . . . . . . 10
β’ (((πβπ)π΅π) β πΎ β Β¬ βπ£ β (π« π β© Fin)((πβπ)π΅π) β βͺ π£) |
152 | 151 | con2bii 357 |
. . . . . . . . 9
β’
(βπ£ β
(π« π β©
Fin)((πβπ)π΅π) β βͺ π£ β Β¬ ((πβπ)π΅π) β πΎ) |
153 | 146, 152 | sylib 217 |
. . . . . . . 8
β’ ((π β§ ((πβπ)π΅π) β π) β Β¬ ((πβπ)π΅π) β πΎ) |
154 | 153 | ex 413 |
. . . . . . 7
β’ (π β (((πβπ)π΅π) β π β Β¬ ((πβπ)π΅π) β πΎ)) |
155 | 154 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β (((πβπ)π΅π) β π β Β¬ ((πβπ)π΅π) β πΎ)) |
156 | 130, 155 | syld 47 |
. . . . 5
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β ((π(ballβπ·)π₯) β π β Β¬ ((πβπ)π΅π) β πΎ)) |
157 | 36, 156 | mt2d 136 |
. . . 4
β’ (((π β§ π₯ β β+) β§ (π β β β§
(2nd β(πβπ)) < (π₯ / 2))) β Β¬ (π(ballβπ·)π₯) β π) |
158 | 27, 157 | rexlimddv 3161 |
. . 3
β’ ((π β§ π₯ β β+) β Β¬
(π(ballβπ·)π₯) β π) |
159 | 158 | nrexdv 3149 |
. 2
β’ (π β Β¬ βπ₯ β β+
(π(ballβπ·)π₯) β π) |
160 | 11, 159 | pm2.21dd 194 |
1
β’ (π β π) |