Step | Hyp | Ref
| Expression |
1 | | heibor.6 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) |
2 | | cmetmet 24355 |
. . . 4
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
3 | | metxmet 23395 |
. . . 4
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
4 | 1, 2, 3 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
5 | | heibor.13 |
. . . 4
⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
6 | | heibor.16 |
. . . 4
⊢ (𝜑 → 𝑍 ∈ 𝑈) |
7 | 5, 6 | sseldd 3918 |
. . 3
⊢ (𝜑 → 𝑍 ∈ 𝐽) |
8 | | heibor.15 |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝑍) |
9 | | heibor.1 |
. . . 4
⊢ 𝐽 = (MetOpen‘𝐷) |
10 | 9 | mopni2 23555 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑍 ∈ 𝐽 ∧ 𝑌 ∈ 𝑍) → ∃𝑥 ∈ ℝ+ (𝑌(ball‘𝐷)𝑥) ⊆ 𝑍) |
11 | 4, 7, 8, 10 | syl3anc 1369 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ+ (𝑌(ball‘𝐷)𝑥) ⊆ 𝑍) |
12 | | rphalfcl 12686 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 2) ∈
ℝ+) |
13 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑟 = (𝑥 / 2) → ((2nd ‘(𝑀‘𝑘)) < 𝑟 ↔ (2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) |
14 | 13 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑟 = (𝑥 / 2) → (∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) |
15 | | heibor.3 |
. . . . . . . 8
⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} |
16 | | heibor.4 |
. . . . . . . 8
⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} |
17 | | heibor.5 |
. . . . . . . 8
⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) |
18 | | heibor.7 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) |
19 | | heibor.8 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) |
20 | | heibor.9 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) |
21 | | heibor.10 |
. . . . . . . 8
⊢ (𝜑 → 𝐶𝐺0) |
22 | | heibor.11 |
. . . . . . . 8
⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) |
23 | | heibor.12 |
. . . . . . . 8
⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) |
24 | 9, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23 | heiborlem7 35902 |
. . . . . . 7
⊢
∀𝑟 ∈
ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 |
25 | 14, 24 | vtoclri 3515 |
. . . . . 6
⊢ ((𝑥 / 2) ∈ ℝ+
→ ∃𝑘 ∈
ℕ (2nd ‘(𝑀‘𝑘)) < (𝑥 / 2)) |
26 | 12, 25 | syl 17 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ ∃𝑘 ∈
ℕ (2nd ‘(𝑀‘𝑘)) < (𝑥 / 2)) |
27 | 26 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑘 ∈ ℕ
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2)) |
28 | | nnnn0 12170 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
29 | 9, 15, 16, 17, 1, 18, 19, 20, 21, 22 | heiborlem4 35899 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑆‘𝑘)𝐺𝑘) |
30 | | fvex 6769 |
. . . . . . . . . 10
⊢ (𝑆‘𝑘) ∈ V |
31 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑘 ∈ V |
32 | 9, 15, 16, 30, 31 | heiborlem2 35897 |
. . . . . . . . 9
⊢ ((𝑆‘𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆‘𝑘) ∈ (𝐹‘𝑘) ∧ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾)) |
33 | 32 | simp3bi 1145 |
. . . . . . . 8
⊢ ((𝑆‘𝑘)𝐺𝑘 → ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾) |
34 | 29, 33 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾) |
35 | 28, 34 | sylan2 592 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾) |
36 | 35 | ad2ant2r 743 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾) |
37 | 4 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → 𝐷 ∈ (∞Met‘𝑋)) |
38 | 9, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23 | heiborlem5 35900 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 ×
ℝ+)) |
39 | 38 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑀‘𝑘) ∈ (𝑋 ×
ℝ+)) |
40 | 39 | ad2ant2r 743 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (𝑀‘𝑘) ∈ (𝑋 ×
ℝ+)) |
41 | | xp1st 7836 |
. . . . . . . . . . 11
⊢ ((𝑀‘𝑘) ∈ (𝑋 × ℝ+) →
(1st ‘(𝑀‘𝑘)) ∈ 𝑋) |
42 | 40, 41 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (1st ‘(𝑀‘𝑘)) ∈ 𝑋) |
43 | | 2nn 11976 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℕ |
44 | | nnexpcl 13723 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
45 | 43, 28, 44 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ →
(2↑𝑘) ∈
ℕ) |
46 | 45 | nnrpd 12699 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ →
(2↑𝑘) ∈
ℝ+) |
47 | 46 | rpreccld 12711 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (1 /
(2↑𝑘)) ∈
ℝ+) |
48 | 47 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (1 / (2↑𝑘)) ∈
ℝ+) |
49 | 48 | rpxrd 12702 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (1 / (2↑𝑘)) ∈
ℝ*) |
50 | | xp2nd 7837 |
. . . . . . . . . . . 12
⊢ ((𝑀‘𝑘) ∈ (𝑋 × ℝ+) →
(2nd ‘(𝑀‘𝑘)) ∈
ℝ+) |
51 | 40, 50 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (2nd ‘(𝑀‘𝑘)) ∈
ℝ+) |
52 | 51 | rpxrd 12702 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (2nd ‘(𝑀‘𝑘)) ∈
ℝ*) |
53 | | 1le3 12115 |
. . . . . . . . . . . . . 14
⊢ 1 ≤
3 |
54 | | elrp 12661 |
. . . . . . . . . . . . . . 15
⊢
((2↑𝑘) ∈
ℝ+ ↔ ((2↑𝑘) ∈ ℝ ∧ 0 < (2↑𝑘))) |
55 | | 1re 10906 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ |
56 | | 3re 11983 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℝ |
57 | | lediv1 11770 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℝ ∧ 3 ∈ ℝ ∧ ((2↑𝑘) ∈ ℝ ∧ 0 < (2↑𝑘))) → (1 ≤ 3 ↔ (1 /
(2↑𝑘)) ≤ (3 /
(2↑𝑘)))) |
58 | 55, 56, 57 | mp3an12 1449 |
. . . . . . . . . . . . . . 15
⊢
(((2↑𝑘) ∈
ℝ ∧ 0 < (2↑𝑘)) → (1 ≤ 3 ↔ (1 / (2↑𝑘)) ≤ (3 / (2↑𝑘)))) |
59 | 54, 58 | sylbi 216 |
. . . . . . . . . . . . . 14
⊢
((2↑𝑘) ∈
ℝ+ → (1 ≤ 3 ↔ (1 / (2↑𝑘)) ≤ (3 / (2↑𝑘)))) |
60 | 53, 59 | mpbii 232 |
. . . . . . . . . . . . 13
⊢
((2↑𝑘) ∈
ℝ+ → (1 / (2↑𝑘)) ≤ (3 / (2↑𝑘))) |
61 | 46, 60 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (1 /
(2↑𝑘)) ≤ (3 /
(2↑𝑘))) |
62 | 61 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (1 / (2↑𝑘)) ≤ (3 / (2↑𝑘))) |
63 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → (𝑆‘𝑛) = (𝑆‘𝑘)) |
64 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘)) |
65 | 64 | oveq2d 7271 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘))) |
66 | 63, 65 | opeq12d 4809 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉 = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
67 | | opex 5373 |
. . . . . . . . . . . . . . 15
⊢
〈(𝑆‘𝑘), (3 / (2↑𝑘))〉 ∈
V |
68 | 66, 23, 67 | fvmpt 6857 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → (𝑀‘𝑘) = 〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) |
69 | 68 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ →
(2nd ‘(𝑀‘𝑘)) = (2nd ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉)) |
70 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢ (3 /
(2↑𝑘)) ∈
V |
71 | 30, 70 | op2nd 7813 |
. . . . . . . . . . . . 13
⊢
(2nd ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) = (3 / (2↑𝑘)) |
72 | 69, 71 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ →
(2nd ‘(𝑀‘𝑘)) = (3 / (2↑𝑘))) |
73 | 72 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (2nd ‘(𝑀‘𝑘)) = (3 / (2↑𝑘))) |
74 | 62, 73 | breqtrrd 5098 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (1 / (2↑𝑘)) ≤ (2nd
‘(𝑀‘𝑘))) |
75 | | ssbl 23484 |
. . . . . . . . . 10
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘(𝑀‘𝑘)) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧
(2nd ‘(𝑀‘𝑘)) ∈ ℝ*) ∧ (1 /
(2↑𝑘)) ≤
(2nd ‘(𝑀‘𝑘))) → ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑘))) ⊆ ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘)))) |
76 | 37, 42, 49, 52, 74, 75 | syl221anc 1379 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑘))) ⊆ ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘)))) |
77 | 28 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → 𝑘 ∈ ℕ0) |
78 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑧 = (1st ‘(𝑀‘𝑘)) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑚)))) |
79 | | oveq2 7263 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘)) |
80 | 79 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑘 → (1 / (2↑𝑚)) = (1 / (2↑𝑘))) |
81 | 80 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑘 → ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑚))) = ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑘)))) |
82 | | ovex 7288 |
. . . . . . . . . . . 12
⊢
((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑘))) ∈ V |
83 | 78, 81, 17, 82 | ovmpo 7411 |
. . . . . . . . . . 11
⊢
(((1st ‘(𝑀‘𝑘)) ∈ 𝑋 ∧ 𝑘 ∈ ℕ0) →
((1st ‘(𝑀‘𝑘))𝐵𝑘) = ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑘)))) |
84 | 42, 77, 83 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀‘𝑘))𝐵𝑘) = ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑘)))) |
85 | 68 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ →
(1st ‘(𝑀‘𝑘)) = (1st ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉)) |
86 | 30, 70 | op1st 7812 |
. . . . . . . . . . . . 13
⊢
(1st ‘〈(𝑆‘𝑘), (3 / (2↑𝑘))〉) = (𝑆‘𝑘) |
87 | 85, 86 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ →
(1st ‘(𝑀‘𝑘)) = (𝑆‘𝑘)) |
88 | 87 | ad2antrl 724 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (1st ‘(𝑀‘𝑘)) = (𝑆‘𝑘)) |
89 | 88 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀‘𝑘))𝐵𝑘) = ((𝑆‘𝑘)𝐵𝑘)) |
90 | 84, 89 | eqtr3d 2780 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(1 / (2↑𝑘))) = ((𝑆‘𝑘)𝐵𝑘)) |
91 | | df-ov 7258 |
. . . . . . . . . 10
⊢
((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘))) = ((ball‘𝐷)‘〈(1st ‘(𝑀‘𝑘)), (2nd ‘(𝑀‘𝑘))〉) |
92 | | 1st2nd2 7843 |
. . . . . . . . . . . 12
⊢ ((𝑀‘𝑘) ∈ (𝑋 × ℝ+) → (𝑀‘𝑘) = 〈(1st ‘(𝑀‘𝑘)), (2nd ‘(𝑀‘𝑘))〉) |
93 | 40, 92 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (𝑀‘𝑘) = 〈(1st ‘(𝑀‘𝑘)), (2nd ‘(𝑀‘𝑘))〉) |
94 | 93 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((ball‘𝐷)‘(𝑀‘𝑘)) = ((ball‘𝐷)‘〈(1st ‘(𝑀‘𝑘)), (2nd ‘(𝑀‘𝑘))〉)) |
95 | 91, 94 | eqtr4id 2798 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘))) = ((ball‘𝐷)‘(𝑀‘𝑘))) |
96 | 76, 90, 95 | 3sstr3d 3963 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((𝑆‘𝑘)𝐵𝑘) ⊆ ((ball‘𝐷)‘(𝑀‘𝑘))) |
97 | 9 | mopntop 23501 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
98 | 37, 97 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → 𝐽 ∈ Top) |
99 | | blssm 23479 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘(𝑀‘𝑘)) ∈ 𝑋 ∧ (2nd ‘(𝑀‘𝑘)) ∈ ℝ*) →
((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘))) ⊆ 𝑋) |
100 | 37, 42, 52, 99 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘))) ⊆ 𝑋) |
101 | 9 | mopnuni 23502 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
102 | 37, 101 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → 𝑋 = ∪ 𝐽) |
103 | 100, 95, 102 | 3sstr3d 3963 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((ball‘𝐷)‘(𝑀‘𝑘)) ⊆ ∪ 𝐽) |
104 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
105 | 104 | sscls 22115 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧
((ball‘𝐷)‘(𝑀‘𝑘)) ⊆ ∪ 𝐽) → ((ball‘𝐷)‘(𝑀‘𝑘)) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘)))) |
106 | 98, 103, 105 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((ball‘𝐷)‘(𝑀‘𝑘)) ⊆ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘)))) |
107 | 95 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘)))) = ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘)))) |
108 | 12 | ad2antlr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (𝑥 / 2) ∈
ℝ+) |
109 | 108 | rpxrd 12702 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (𝑥 / 2) ∈
ℝ*) |
110 | | simprr 769 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (2nd ‘(𝑀‘𝑘)) < (𝑥 / 2)) |
111 | 9 | blsscls 23569 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘(𝑀‘𝑘)) ∈ 𝑋) ∧ ((2nd ‘(𝑀‘𝑘)) ∈ ℝ* ∧ (𝑥 / 2) ∈ ℝ*
∧ (2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘)))) ⊆ ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(𝑥 / 2))) |
112 | 37, 42, 52, 109, 110, 111 | syl23anc 1375 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((1st ‘(𝑀‘𝑘))(ball‘𝐷)(2nd ‘(𝑀‘𝑘)))) ⊆ ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(𝑥 / 2))) |
113 | 107, 112 | eqsstrrd 3956 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘))) ⊆ ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(𝑥 / 2))) |
114 | | rpre 12667 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
115 | 114 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → 𝑥 ∈ ℝ) |
116 | | heibor.17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1st ∘
𝑀)(⇝𝑡‘𝐽)𝑌) |
117 | 9, 15, 16, 17, 1, 18, 19, 20, 21, 22, 23 | heiborlem6 35901 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑡 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑡 + 1))) ⊆ ((ball‘𝐷)‘(𝑀‘𝑡))) |
118 | 4, 38, 117, 9 | caublcls 24378 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (1st ∘
𝑀)(⇝𝑡‘𝐽)𝑌 ∧ 𝑘 ∈ ℕ) → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘)))) |
119 | 118 | 3expia 1119 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (1st ∘
𝑀)(⇝𝑡‘𝐽)𝑌) → (𝑘 ∈ ℕ → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘))))) |
120 | 116, 119 | mpdan 683 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ ℕ → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘))))) |
121 | 120 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘)))) |
122 | 121 | ad2ant2r 743 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → 𝑌 ∈ ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘)))) |
123 | 113, 122 | sseldd 3918 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → 𝑌 ∈ ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(𝑥 / 2))) |
124 | | blhalf 23466 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ (1st
‘(𝑀‘𝑘)) ∈ 𝑋) ∧ (𝑥 ∈ ℝ ∧ 𝑌 ∈ ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(𝑥 / 2)))) → ((1st
‘(𝑀‘𝑘))(ball‘𝐷)(𝑥 / 2)) ⊆ (𝑌(ball‘𝐷)𝑥)) |
125 | 37, 42, 115, 123, 124 | syl22anc 835 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((1st ‘(𝑀‘𝑘))(ball‘𝐷)(𝑥 / 2)) ⊆ (𝑌(ball‘𝐷)𝑥)) |
126 | 113, 125 | sstrd 3927 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((cls‘𝐽)‘((ball‘𝐷)‘(𝑀‘𝑘))) ⊆ (𝑌(ball‘𝐷)𝑥)) |
127 | 106, 126 | sstrd 3927 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((ball‘𝐷)‘(𝑀‘𝑘)) ⊆ (𝑌(ball‘𝐷)𝑥)) |
128 | 96, 127 | sstrd 3927 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((𝑆‘𝑘)𝐵𝑘) ⊆ (𝑌(ball‘𝐷)𝑥)) |
129 | | sstr2 3924 |
. . . . . . 7
⊢ (((𝑆‘𝑘)𝐵𝑘) ⊆ (𝑌(ball‘𝐷)𝑥) → ((𝑌(ball‘𝐷)𝑥) ⊆ 𝑍 → ((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍)) |
130 | 128, 129 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((𝑌(ball‘𝐷)𝑥) ⊆ 𝑍 → ((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍)) |
131 | | unisng 4857 |
. . . . . . . . . . . . 13
⊢ (𝑍 ∈ 𝑈 → ∪ {𝑍} = 𝑍) |
132 | 6, 131 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ {𝑍}
= 𝑍) |
133 | 132 | sseq2d 3949 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ {𝑍} ↔ ((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍)) |
134 | 133 | biimpar 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍) → ((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ {𝑍}) |
135 | 6 | snssd 4739 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {𝑍} ⊆ 𝑈) |
136 | | snex 5349 |
. . . . . . . . . . . . . 14
⊢ {𝑍} ∈ V |
137 | 136 | elpw 4534 |
. . . . . . . . . . . . 13
⊢ ({𝑍} ∈ 𝒫 𝑈 ↔ {𝑍} ⊆ 𝑈) |
138 | 135, 137 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑍} ∈ 𝒫 𝑈) |
139 | | snfi 8788 |
. . . . . . . . . . . . 13
⊢ {𝑍} ∈ Fin |
140 | 139 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑍} ∈ Fin) |
141 | 138, 140 | elind 4124 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑍} ∈ (𝒫 𝑈 ∩ Fin)) |
142 | | unieq 4847 |
. . . . . . . . . . . . 13
⊢ (𝑣 = {𝑍} → ∪ 𝑣 = ∪
{𝑍}) |
143 | 142 | sseq2d 3949 |
. . . . . . . . . . . 12
⊢ (𝑣 = {𝑍} → (((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣 ↔ ((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ {𝑍})) |
144 | 143 | rspcev 3552 |
. . . . . . . . . . 11
⊢ (({𝑍} ∈ (𝒫 𝑈 ∩ Fin) ∧ ((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ {𝑍}) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣) |
145 | 141, 144 | sylan 579 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ {𝑍}) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣) |
146 | 134, 145 | syldan 590 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣) |
147 | | ovex 7288 |
. . . . . . . . . . 11
⊢ ((𝑆‘𝑘)𝐵𝑘) ∈ V |
148 | | sseq1 3942 |
. . . . . . . . . . . . 13
⊢ (𝑢 = ((𝑆‘𝑘)𝐵𝑘) → (𝑢 ⊆ ∪ 𝑣 ↔ ((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣)) |
149 | 148 | rexbidv 3225 |
. . . . . . . . . . . 12
⊢ (𝑢 = ((𝑆‘𝑘)𝐵𝑘) → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣)) |
150 | 149 | notbid 317 |
. . . . . . . . . . 11
⊢ (𝑢 = ((𝑆‘𝑘)𝐵𝑘) → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣)) |
151 | 147, 150,
15 | elab2 3606 |
. . . . . . . . . 10
⊢ (((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣) |
152 | 151 | con2bii 357 |
. . . . . . . . 9
⊢
(∃𝑣 ∈
(𝒫 𝑈 ∩
Fin)((𝑆‘𝑘)𝐵𝑘) ⊆ ∪ 𝑣 ↔ ¬ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾) |
153 | 146, 152 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍) → ¬ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾) |
154 | 153 | ex 412 |
. . . . . . 7
⊢ (𝜑 → (((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍 → ¬ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾)) |
155 | 154 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → (((𝑆‘𝑘)𝐵𝑘) ⊆ 𝑍 → ¬ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾)) |
156 | 130, 155 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ((𝑌(ball‘𝐷)𝑥) ⊆ 𝑍 → ¬ ((𝑆‘𝑘)𝐵𝑘) ∈ 𝐾)) |
157 | 36, 156 | mt2d 136 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑘 ∈ ℕ ∧
(2nd ‘(𝑀‘𝑘)) < (𝑥 / 2))) → ¬ (𝑌(ball‘𝐷)𝑥) ⊆ 𝑍) |
158 | 27, 157 | rexlimddv 3219 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ¬
(𝑌(ball‘𝐷)𝑥) ⊆ 𝑍) |
159 | 158 | nrexdv 3197 |
. 2
⊢ (𝜑 → ¬ ∃𝑥 ∈ ℝ+
(𝑌(ball‘𝐷)𝑥) ⊆ 𝑍) |
160 | 11, 159 | pm2.21dd 194 |
1
⊢ (𝜑 → 𝜓) |