MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspec Structured version   Visualization version   GIF version

Theorem rspec 3248
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rspec.1 𝑥𝐴 𝜑
Assertion
Ref Expression
rspec (𝑥𝐴𝜑)

Proof of Theorem rspec
StepHypRef Expression
1 rspec.1 . 2 𝑥𝐴 𝜑
2 rsp 3245 . 2 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
31, 2ax-mp 5 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wral 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-ex 1777  df-ral 3060
This theorem is referenced by:  rspec2  3277  vtoclri  3590  wfis  6378  wfis2f  6381  wfis2  6383  isarep2  6659  mpoexw  8102  ecopover  8860  frins  9790  alephsuc2  10118  indstr  12956  reltxrnmnf  13381  ackbijnn  15861  mrelatglb0  18619  0frgp  19812  iccpnfcnv  24989  prter2  38863  natlocalincr  46830  natglobalincr  46831
  Copyright terms: Public domain W3C validator