MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspec Structured version   Visualization version   GIF version

Theorem rspec 3237
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rspec.1 𝑥𝐴 𝜑
Assertion
Ref Expression
rspec (𝑥𝐴𝜑)

Proof of Theorem rspec
StepHypRef Expression
1 rspec.1 . 2 𝑥𝐴 𝜑
2 rsp 3234 . 2 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
31, 2ax-mp 5 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wral 3050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-12 2176
This theorem depends on definitions:  df-bi 207  df-ex 1779  df-ral 3051
This theorem is referenced by:  rspec2  3265  vtoclri  3574  wfis  6357  wfis2f  6360  wfis2  6362  isarep2  6639  mpoexw  8086  ecopover  8844  frins  9775  alephsuc2  10103  indstr  12941  reltxrnmnf  13367  ackbijnn  15847  mrelatglb0  18580  0frgp  19770  iccpnfcnv  24930  prter2  38823  natlocalincr  46836  natglobalincr  46837
  Copyright terms: Public domain W3C validator