MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspec Structured version   Visualization version   GIF version

Theorem rspec 3129
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rspec.1 𝑥𝐴 𝜑
Assertion
Ref Expression
rspec (𝑥𝐴𝜑)

Proof of Theorem rspec
StepHypRef Expression
1 rspec.1 . 2 𝑥𝐴 𝜑
2 rsp 3127 . 2 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
31, 2ax-mp 5 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-ex 1788  df-ral 3066
This theorem is referenced by:  rspec2  3132  vtoclri  3501  wfis  6206  wfis2f  6208  wfis2  6210  isarep2  6469  mpoexw  7849  ecopover  8503  frins  9368  alephsuc2  9694  indstr  12512  reltxrnmnf  12932  ackbijnn  15392  mrelatglb0  18067  0frgp  19169  iccpnfcnv  23841  prter2  36632
  Copyright terms: Public domain W3C validator