MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspec Structured version   Visualization version   GIF version

Theorem rspec 3226
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rspec.1 𝑥𝐴 𝜑
Assertion
Ref Expression
rspec (𝑥𝐴𝜑)

Proof of Theorem rspec
StepHypRef Expression
1 rspec.1 . 2 𝑥𝐴 𝜑
2 rsp 3223 . 2 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
31, 2ax-mp 5 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-ral 3045
This theorem is referenced by:  rspec2  3254  vtoclri  3553  wfis  6313  wfis2f  6315  wfis2  6317  isarep2  6590  mpoexw  8036  ecopover  8771  frins  9681  alephsuc2  10009  indstr  12851  reltxrnmnf  13279  ackbijnn  15770  mrelatglb0  18502  0frgp  19693  iccpnfcnv  24875  prter2  38867  natlocalincr  46867  natglobalincr  46868
  Copyright terms: Public domain W3C validator