MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspec Structured version   Visualization version   GIF version

Theorem rspec 3133
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rspec.1 𝑥𝐴 𝜑
Assertion
Ref Expression
rspec (𝑥𝐴𝜑)

Proof of Theorem rspec
StepHypRef Expression
1 rspec.1 . 2 𝑥𝐴 𝜑
2 rsp 3131 . 2 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
31, 2ax-mp 5 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-ral 3069
This theorem is referenced by:  rspec2  3136  vtoclri  3525  wfis  6258  wfis2f  6261  wfis2  6263  isarep2  6523  mpoexw  7919  ecopover  8610  frins  9510  alephsuc2  9836  indstr  12656  reltxrnmnf  13076  ackbijnn  15540  mrelatglb0  18279  0frgp  19385  iccpnfcnv  24107  prter2  36895  natlocalincr  46511  natglobalincr  46512
  Copyright terms: Public domain W3C validator