MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspec Structured version   Visualization version   GIF version

Theorem rspec 3131
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rspec.1 𝑥𝐴 𝜑
Assertion
Ref Expression
rspec (𝑥𝐴𝜑)

Proof of Theorem rspec
StepHypRef Expression
1 rspec.1 . 2 𝑥𝐴 𝜑
2 rsp 3129 . 2 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
31, 2ax-mp 5 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-ral 3068
This theorem is referenced by:  rspec2  3134  vtoclri  3515  wfis  6243  wfis2f  6246  wfis2  6248  isarep2  6507  mpoexw  7892  ecopover  8568  frins  9441  alephsuc2  9767  indstr  12585  reltxrnmnf  13005  ackbijnn  15468  mrelatglb0  18194  0frgp  19300  iccpnfcnv  24013  prter2  36822
  Copyright terms: Public domain W3C validator