| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspec | Structured version Visualization version GIF version | ||
| Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rspec.1 | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Ref | Expression |
|---|---|
| rspec | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspec.1 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 | |
| 2 | rsp 3226 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-ral 3046 |
| This theorem is referenced by: rspec2 3257 vtoclri 3559 wfis 6327 wfis2f 6329 wfis2 6331 isarep2 6610 mpoexw 8059 ecopover 8796 frins 9711 alephsuc2 10039 indstr 12881 reltxrnmnf 13309 ackbijnn 15800 mrelatglb0 18526 0frgp 19715 iccpnfcnv 24848 prter2 38869 natlocalincr 46867 natglobalincr 46868 |
| Copyright terms: Public domain | W3C validator |