MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspec Structured version   Visualization version   GIF version

Theorem rspec 3223
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rspec.1 𝑥𝐴 𝜑
Assertion
Ref Expression
rspec (𝑥𝐴𝜑)

Proof of Theorem rspec
StepHypRef Expression
1 rspec.1 . 2 𝑥𝐴 𝜑
2 rsp 3220 . 2 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
31, 2ax-mp 5 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wral 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-ral 3048
This theorem is referenced by:  rspec2  3251  vtoclri  3540  wfis  6299  wfis2f  6301  wfis2  6303  isarep2  6571  mpoexw  8010  ecopover  8745  frins  9645  alephsuc2  9971  indstr  12814  reltxrnmnf  13242  ackbijnn  15735  mrelatglb0  18467  0frgp  19691  iccpnfcnv  24869  prter2  38990  natlocalincr  46984  natglobalincr  46985
  Copyright terms: Public domain W3C validator