![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspec | Structured version Visualization version GIF version |
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
rspec.1 | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Ref | Expression |
---|---|
rspec | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspec.1 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 | |
2 | rsp 3253 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-ral 3068 |
This theorem is referenced by: rspec2 3285 vtoclri 3603 wfis 6387 wfis2f 6390 wfis2 6392 isarep2 6669 mpoexw 8119 ecopover 8879 frins 9821 alephsuc2 10149 indstr 12981 reltxrnmnf 13404 ackbijnn 15876 mrelatglb0 18631 0frgp 19821 iccpnfcnv 24994 prter2 38837 natlocalincr 46795 natglobalincr 46796 |
Copyright terms: Public domain | W3C validator |