MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspec Structured version   Visualization version   GIF version

Theorem rspec 3251
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rspec.1 𝑥𝐴 𝜑
Assertion
Ref Expression
rspec (𝑥𝐴𝜑)

Proof of Theorem rspec
StepHypRef Expression
1 rspec.1 . 2 𝑥𝐴 𝜑
2 rsp 3248 . 2 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
31, 2ax-mp 5 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2103  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2173
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-ral 3064
This theorem is referenced by:  rspec2  3280  vtoclri  3599  wfis  6386  wfis2f  6389  wfis2  6391  isarep2  6668  mpoexw  8115  ecopover  8875  frins  9817  alephsuc2  10145  indstr  12977  reltxrnmnf  13400  ackbijnn  15872  mrelatglb0  18626  0frgp  19816  iccpnfcnv  24987  prter2  38785  natlocalincr  46729  natglobalincr  46730
  Copyright terms: Public domain W3C validator