Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspec | Structured version Visualization version GIF version |
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
rspec.1 | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Ref | Expression |
---|---|
rspec | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspec.1 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 | |
2 | rsp 3131 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-ral 3069 |
This theorem is referenced by: rspec2 3136 vtoclri 3525 wfis 6258 wfis2f 6261 wfis2 6263 isarep2 6523 mpoexw 7919 ecopover 8610 frins 9510 alephsuc2 9836 indstr 12656 reltxrnmnf 13076 ackbijnn 15540 mrelatglb0 18279 0frgp 19385 iccpnfcnv 24107 prter2 36895 natlocalincr 46511 natglobalincr 46512 |
Copyright terms: Public domain | W3C validator |