MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspec Structured version   Visualization version   GIF version

Theorem rspec 3248
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rspec.1 𝑥𝐴 𝜑
Assertion
Ref Expression
rspec (𝑥𝐴𝜑)

Proof of Theorem rspec
StepHypRef Expression
1 rspec.1 . 2 𝑥𝐴 𝜑
2 rsp 3245 . 2 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
31, 2ax-mp 5 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-ral 3063
This theorem is referenced by:  rspec2  3277  vtoclri  3577  wfis  6357  wfis2f  6360  wfis2  6362  isarep2  6640  mpoexw  8065  ecopover  8815  frins  9747  alephsuc2  10075  indstr  12900  reltxrnmnf  13321  ackbijnn  15774  mrelatglb0  18514  0frgp  19647  iccpnfcnv  24460  prter2  37751  natlocalincr  45590  natglobalincr  45591
  Copyright terms: Public domain W3C validator