| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspec | Structured version Visualization version GIF version | ||
| Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rspec.1 | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Ref | Expression |
|---|---|
| rspec | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspec.1 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 | |
| 2 | rsp 3223 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-ral 3045 |
| This theorem is referenced by: rspec2 3254 vtoclri 3553 wfis 6313 wfis2f 6315 wfis2 6317 isarep2 6590 mpoexw 8036 ecopover 8771 frins 9681 alephsuc2 10009 indstr 12851 reltxrnmnf 13279 ackbijnn 15770 mrelatglb0 18502 0frgp 19693 iccpnfcnv 24875 prter2 38867 natlocalincr 46867 natglobalincr 46868 |
| Copyright terms: Public domain | W3C validator |