![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspec | Structured version Visualization version GIF version |
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
rspec.1 | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Ref | Expression |
---|---|
rspec | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspec.1 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 | |
2 | rsp 3245 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-ex 1777 df-ral 3060 |
This theorem is referenced by: rspec2 3277 vtoclri 3590 wfis 6378 wfis2f 6381 wfis2 6383 isarep2 6659 mpoexw 8102 ecopover 8860 frins 9790 alephsuc2 10118 indstr 12956 reltxrnmnf 13381 ackbijnn 15861 mrelatglb0 18619 0frgp 19812 iccpnfcnv 24989 prter2 38863 natlocalincr 46830 natglobalincr 46831 |
Copyright terms: Public domain | W3C validator |