MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspec Structured version   Visualization version   GIF version

Theorem rspec 3237
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rspec.1 𝑥𝐴 𝜑
Assertion
Ref Expression
rspec (𝑥𝐴𝜑)

Proof of Theorem rspec
StepHypRef Expression
1 rspec.1 . 2 𝑥𝐴 𝜑
2 rsp 3234 . 2 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
31, 2ax-mp 5 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-ral 3053
This theorem is referenced by:  rspec2  3265  vtoclri  3574  wfis  6349  wfis2f  6352  wfis2  6354  isarep2  6633  mpoexw  8082  ecopover  8840  frins  9771  alephsuc2  10099  indstr  12937  reltxrnmnf  13364  ackbijnn  15849  mrelatglb0  18576  0frgp  19765  iccpnfcnv  24898  prter2  38904  natlocalincr  46885  natglobalincr  46886
  Copyright terms: Public domain W3C validator