| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspec | Structured version Visualization version GIF version | ||
| Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rspec.1 | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Ref | Expression |
|---|---|
| rspec | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspec.1 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 | |
| 2 | rsp 3217 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-ral 3045 |
| This theorem is referenced by: rspec2 3248 vtoclri 3545 wfis 6300 wfis2f 6302 wfis2 6304 isarep2 6572 mpoexw 8013 ecopover 8748 frins 9648 alephsuc2 9974 indstr 12817 reltxrnmnf 13245 ackbijnn 15735 mrelatglb0 18467 0frgp 19658 iccpnfcnv 24840 prter2 38870 natlocalincr 46867 natglobalincr 46868 |
| Copyright terms: Public domain | W3C validator |