| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspec | Structured version Visualization version GIF version | ||
| Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rspec.1 | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Ref | Expression |
|---|---|
| rspec | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspec.1 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 | |
| 2 | rsp 3234 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-ral 3051 |
| This theorem is referenced by: rspec2 3265 vtoclri 3574 wfis 6357 wfis2f 6360 wfis2 6362 isarep2 6639 mpoexw 8086 ecopover 8844 frins 9775 alephsuc2 10103 indstr 12941 reltxrnmnf 13367 ackbijnn 15847 mrelatglb0 18580 0frgp 19770 iccpnfcnv 24930 prter2 38823 natlocalincr 46836 natglobalincr 46837 |
| Copyright terms: Public domain | W3C validator |