MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspec Structured version   Visualization version   GIF version

Theorem rspec 3229
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rspec.1 𝑥𝐴 𝜑
Assertion
Ref Expression
rspec (𝑥𝐴𝜑)

Proof of Theorem rspec
StepHypRef Expression
1 rspec.1 . 2 𝑥𝐴 𝜑
2 rsp 3226 . 2 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
31, 2ax-mp 5 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-ral 3046
This theorem is referenced by:  rspec2  3257  vtoclri  3559  wfis  6327  wfis2f  6329  wfis2  6331  isarep2  6610  mpoexw  8059  ecopover  8796  frins  9711  alephsuc2  10039  indstr  12881  reltxrnmnf  13309  ackbijnn  15800  mrelatglb0  18526  0frgp  19715  iccpnfcnv  24848  prter2  38869  natlocalincr  46867  natglobalincr  46868
  Copyright terms: Public domain W3C validator