![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspec | Structured version Visualization version GIF version |
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
rspec.1 | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Ref | Expression |
---|---|
rspec | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspec.1 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 | |
2 | rsp 3248 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2103 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2173 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-ral 3064 |
This theorem is referenced by: rspec2 3280 vtoclri 3599 wfis 6386 wfis2f 6389 wfis2 6391 isarep2 6668 mpoexw 8115 ecopover 8875 frins 9817 alephsuc2 10145 indstr 12977 reltxrnmnf 13400 ackbijnn 15872 mrelatglb0 18626 0frgp 19816 iccpnfcnv 24987 prter2 38785 natlocalincr 46729 natglobalincr 46730 |
Copyright terms: Public domain | W3C validator |