| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspec | Structured version Visualization version GIF version | ||
| Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rspec.1 | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| Ref | Expression |
|---|---|
| rspec | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspec.1 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 | |
| 2 | rsp 3234 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-ral 3053 |
| This theorem is referenced by: rspec2 3265 vtoclri 3574 wfis 6349 wfis2f 6352 wfis2 6354 isarep2 6633 mpoexw 8082 ecopover 8840 frins 9771 alephsuc2 10099 indstr 12937 reltxrnmnf 13364 ackbijnn 15849 mrelatglb0 18576 0frgp 19765 iccpnfcnv 24898 prter2 38904 natlocalincr 46885 natglobalincr 46886 |
| Copyright terms: Public domain | W3C validator |