MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspec Structured version   Visualization version   GIF version

Theorem rspec 3238
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
Hypothesis
Ref Expression
rspec.1 𝑥𝐴 𝜑
Assertion
Ref Expression
rspec (𝑥𝐴𝜑)

Proof of Theorem rspec
StepHypRef Expression
1 rspec.1 . 2 𝑥𝐴 𝜑
2 rsp 3235 . 2 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
31, 2ax-mp 5 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wral 3051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-ex 1774  df-ral 3052
This theorem is referenced by:  rspec2  3267  vtoclri  3571  wfis  6361  wfis2f  6364  wfis2  6366  isarep2  6643  mpoexw  8081  ecopover  8838  frins  9775  alephsuc2  10103  indstr  12930  reltxrnmnf  13353  ackbijnn  15806  mrelatglb0  18552  0frgp  19738  iccpnfcnv  24899  prter2  38422  natlocalincr  46325  natglobalincr  46326
  Copyright terms: Public domain W3C validator