Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > harmonicbnd | Structured version Visualization version GIF version |
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 9-Apr-2016.) |
Ref | Expression |
---|---|
harmonicbnd | ⊢ (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ (γ[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7357 | . . . . 5 ⊢ (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁)) | |
2 | 1 | sumeq1d 15520 | . . . 4 ⊢ (𝑛 = 𝑁 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...𝑁)(1 / 𝑚)) |
3 | fveq2 6837 | . . . 4 ⊢ (𝑛 = 𝑁 → (log‘𝑛) = (log‘𝑁)) | |
4 | 2, 3 | oveq12d 7367 | . . 3 ⊢ (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁))) |
5 | 4 | eleq1d 2822 | . 2 ⊢ (𝑛 = 𝑁 → ((Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) ∈ (γ[,]1) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ (γ[,]1))) |
6 | eqid 2737 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) | |
7 | eqid 2737 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) | |
8 | eqid 2737 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) | |
9 | oveq2 7357 | . . . . . . 7 ⊢ (𝑘 = 𝑛 → (1 / 𝑘) = (1 / 𝑛)) | |
10 | 9 | oveq2d 7365 | . . . . . . . 8 ⊢ (𝑘 = 𝑛 → (1 + (1 / 𝑘)) = (1 + (1 / 𝑛))) |
11 | 10 | fveq2d 6841 | . . . . . . 7 ⊢ (𝑘 = 𝑛 → (log‘(1 + (1 / 𝑘))) = (log‘(1 + (1 / 𝑛)))) |
12 | 9, 11 | oveq12d 7367 | . . . . . 6 ⊢ (𝑘 = 𝑛 → ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) = ((1 / 𝑛) − (log‘(1 + (1 / 𝑛))))) |
13 | 12 | cbvmptv 5216 | . . . . 5 ⊢ (𝑘 ∈ ℕ ↦ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘))))) = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛))))) |
14 | 6, 7, 8, 13 | emcllem7 26264 | . . . 4 ⊢ (γ ∈ ((1 − (log‘2))[,]1) ∧ (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))):ℕ⟶(γ[,]1) ∧ (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))):ℕ⟶((1 − (log‘2))[,]γ)) |
15 | 14 | simp2i 1140 | . . 3 ⊢ (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))):ℕ⟶(γ[,]1) |
16 | 6 | fmpt 7052 | . . 3 ⊢ (∀𝑛 ∈ ℕ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) ∈ (γ[,]1) ↔ (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))):ℕ⟶(γ[,]1)) |
17 | 15, 16 | mpbir 230 | . 2 ⊢ ∀𝑛 ∈ ℕ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) ∈ (γ[,]1) |
18 | 5, 17 | vtoclri 3543 | 1 ⊢ (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ (γ[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ↦ cmpt 5186 ⟶wf 6487 ‘cfv 6491 (class class class)co 7349 1c1 10985 + caddc 10987 − cmin 11318 / cdiv 11745 ℕcn 12086 2c2 12141 [,]cicc 13195 ...cfz 13352 Σcsu 15504 logclog 25823 γcem 26254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-inf2 9510 ax-cnex 11040 ax-resscn 11041 ax-1cn 11042 ax-icn 11043 ax-addcl 11044 ax-addrcl 11045 ax-mulcl 11046 ax-mulrcl 11047 ax-mulcom 11048 ax-addass 11049 ax-mulass 11050 ax-distr 11051 ax-i2m1 11052 ax-1ne0 11053 ax-1rid 11054 ax-rnegex 11055 ax-rrecex 11056 ax-cnre 11057 ax-pre-lttri 11058 ax-pre-lttrn 11059 ax-pre-ltadd 11060 ax-pre-mulgt0 11061 ax-pre-sup 11062 ax-addf 11063 ax-mulf 11064 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-iin 4955 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-se 5586 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-pred 6249 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-isom 6500 df-riota 7305 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7607 df-om 7793 df-1st 7911 df-2nd 7912 df-supp 8060 df-frecs 8179 df-wrecs 8210 df-recs 8284 df-rdg 8323 df-1o 8379 df-2o 8380 df-er 8581 df-map 8700 df-pm 8701 df-ixp 8769 df-en 8817 df-dom 8818 df-sdom 8819 df-fin 8820 df-fsupp 9239 df-fi 9280 df-sup 9311 df-inf 9312 df-oi 9379 df-card 9808 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-le 11128 df-sub 11320 df-neg 11321 df-div 11746 df-nn 12087 df-2 12149 df-3 12150 df-4 12151 df-5 12152 df-6 12153 df-7 12154 df-8 12155 df-9 12156 df-n0 12347 df-z 12433 df-dec 12551 df-uz 12696 df-q 12802 df-rp 12844 df-xneg 12961 df-xadd 12962 df-xmul 12963 df-ioo 13196 df-ioc 13197 df-ico 13198 df-icc 13199 df-fz 13353 df-fzo 13496 df-fl 13625 df-mod 13703 df-seq 13835 df-exp 13896 df-fac 14101 df-bc 14130 df-hash 14158 df-shft 14885 df-cj 14917 df-re 14918 df-im 14919 df-sqrt 15053 df-abs 15054 df-limsup 15287 df-clim 15304 df-rlim 15305 df-sum 15505 df-ef 15884 df-sin 15886 df-cos 15887 df-pi 15889 df-struct 16953 df-sets 16970 df-slot 16988 df-ndx 17000 df-base 17018 df-ress 17047 df-plusg 17080 df-mulr 17081 df-starv 17082 df-sca 17083 df-vsca 17084 df-ip 17085 df-tset 17086 df-ple 17087 df-ds 17089 df-unif 17090 df-hom 17091 df-cco 17092 df-rest 17238 df-topn 17239 df-0g 17257 df-gsum 17258 df-topgen 17259 df-pt 17260 df-prds 17263 df-xrs 17318 df-qtop 17323 df-imas 17324 df-xps 17326 df-mre 17400 df-mrc 17401 df-acs 17403 df-mgm 18431 df-sgrp 18480 df-mnd 18491 df-submnd 18536 df-mulg 18805 df-cntz 19027 df-cmn 19491 df-psmet 20702 df-xmet 20703 df-met 20704 df-bl 20705 df-mopn 20706 df-fbas 20707 df-fg 20708 df-cnfld 20711 df-top 22156 df-topon 22173 df-topsp 22195 df-bases 22209 df-cld 22283 df-ntr 22284 df-cls 22285 df-nei 22362 df-lp 22400 df-perf 22401 df-cn 22491 df-cnp 22492 df-haus 22579 df-tx 22826 df-hmeo 23019 df-fil 23110 df-fm 23202 df-flim 23203 df-flf 23204 df-xms 23586 df-ms 23587 df-tms 23588 df-cncf 24154 df-limc 25143 df-dv 25144 df-log 25825 df-em 26255 |
This theorem is referenced by: harmonicubnd 26272 harmonicbnd4 26273 pntpbnd2 26848 |
Copyright terms: Public domain | W3C validator |