MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonicbnd Structured version   Visualization version   GIF version

Theorem harmonicbnd 26266
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 9-Apr-2016.)
Assertion
Ref Expression
harmonicbnd (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ (γ[,]1))
Distinct variable group:   𝑚,𝑁

Proof of Theorem harmonicbnd
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7357 . . . . 5 (𝑛 = 𝑁 → (1...𝑛) = (1...𝑁))
21sumeq1d 15520 . . . 4 (𝑛 = 𝑁 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...𝑁)(1 / 𝑚))
3 fveq2 6837 . . . 4 (𝑛 = 𝑁 → (log‘𝑛) = (log‘𝑁))
42, 3oveq12d 7367 . . 3 (𝑛 = 𝑁 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)))
54eleq1d 2822 . 2 (𝑛 = 𝑁 → ((Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) ∈ (γ[,]1) ↔ (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ (γ[,]1)))
6 eqid 2737 . . . . 5 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))) = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
7 eqid 2737 . . . . 5 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))) = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
8 eqid 2737 . . . . 5 (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛)))) = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
9 oveq2 7357 . . . . . . 7 (𝑘 = 𝑛 → (1 / 𝑘) = (1 / 𝑛))
109oveq2d 7365 . . . . . . . 8 (𝑘 = 𝑛 → (1 + (1 / 𝑘)) = (1 + (1 / 𝑛)))
1110fveq2d 6841 . . . . . . 7 (𝑘 = 𝑛 → (log‘(1 + (1 / 𝑘))) = (log‘(1 + (1 / 𝑛))))
129, 11oveq12d 7367 . . . . . 6 (𝑘 = 𝑛 → ((1 / 𝑘) − (log‘(1 + (1 / 𝑘)))) = ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
1312cbvmptv 5216 . . . . 5 (𝑘 ∈ ℕ ↦ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘))))) = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
146, 7, 8, 13emcllem7 26264 . . . 4 (γ ∈ ((1 − (log‘2))[,]1) ∧ (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))):ℕ⟶(γ[,]1) ∧ (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1)))):ℕ⟶((1 − (log‘2))[,]γ))
1514simp2i 1140 . . 3 (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))):ℕ⟶(γ[,]1)
166fmpt 7052 . . 3 (∀𝑛 ∈ ℕ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) ∈ (γ[,]1) ↔ (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛))):ℕ⟶(γ[,]1))
1715, 16mpbir 230 . 2 𝑛 ∈ ℕ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) ∈ (γ[,]1)
185, 17vtoclri 3543 1 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘𝑁)) ∈ (γ[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wral 3062  cmpt 5186  wf 6487  cfv 6491  (class class class)co 7349  1c1 10985   + caddc 10987  cmin 11318   / cdiv 11745  cn 12086  2c2 12141  [,]cicc 13195  ...cfz 13352  Σcsu 15504  logclog 25823  γcem 26254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-inf2 9510  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061  ax-pre-sup 11062  ax-addf 11063  ax-mulf 11064
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5528  df-eprel 5534  df-po 5542  df-so 5543  df-fr 5585  df-se 5586  df-we 5587  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-pred 6249  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-isom 6500  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7607  df-om 7793  df-1st 7911  df-2nd 7912  df-supp 8060  df-frecs 8179  df-wrecs 8210  df-recs 8284  df-rdg 8323  df-1o 8379  df-2o 8380  df-er 8581  df-map 8700  df-pm 8701  df-ixp 8769  df-en 8817  df-dom 8818  df-sdom 8819  df-fin 8820  df-fsupp 9239  df-fi 9280  df-sup 9311  df-inf 9312  df-oi 9379  df-card 9808  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-div 11746  df-nn 12087  df-2 12149  df-3 12150  df-4 12151  df-5 12152  df-6 12153  df-7 12154  df-8 12155  df-9 12156  df-n0 12347  df-z 12433  df-dec 12551  df-uz 12696  df-q 12802  df-rp 12844  df-xneg 12961  df-xadd 12962  df-xmul 12963  df-ioo 13196  df-ioc 13197  df-ico 13198  df-icc 13199  df-fz 13353  df-fzo 13496  df-fl 13625  df-mod 13703  df-seq 13835  df-exp 13896  df-fac 14101  df-bc 14130  df-hash 14158  df-shft 14885  df-cj 14917  df-re 14918  df-im 14919  df-sqrt 15053  df-abs 15054  df-limsup 15287  df-clim 15304  df-rlim 15305  df-sum 15505  df-ef 15884  df-sin 15886  df-cos 15887  df-pi 15889  df-struct 16953  df-sets 16970  df-slot 16988  df-ndx 17000  df-base 17018  df-ress 17047  df-plusg 17080  df-mulr 17081  df-starv 17082  df-sca 17083  df-vsca 17084  df-ip 17085  df-tset 17086  df-ple 17087  df-ds 17089  df-unif 17090  df-hom 17091  df-cco 17092  df-rest 17238  df-topn 17239  df-0g 17257  df-gsum 17258  df-topgen 17259  df-pt 17260  df-prds 17263  df-xrs 17318  df-qtop 17323  df-imas 17324  df-xps 17326  df-mre 17400  df-mrc 17401  df-acs 17403  df-mgm 18431  df-sgrp 18480  df-mnd 18491  df-submnd 18536  df-mulg 18805  df-cntz 19027  df-cmn 19491  df-psmet 20702  df-xmet 20703  df-met 20704  df-bl 20705  df-mopn 20706  df-fbas 20707  df-fg 20708  df-cnfld 20711  df-top 22156  df-topon 22173  df-topsp 22195  df-bases 22209  df-cld 22283  df-ntr 22284  df-cls 22285  df-nei 22362  df-lp 22400  df-perf 22401  df-cn 22491  df-cnp 22492  df-haus 22579  df-tx 22826  df-hmeo 23019  df-fil 23110  df-fm 23202  df-flim 23203  df-flf 23204  df-xms 23586  df-ms 23587  df-tms 23588  df-cncf 24154  df-limc 25143  df-dv 25144  df-log 25825  df-em 26255
This theorem is referenced by:  harmonicubnd  26272  harmonicbnd4  26273  pntpbnd2  26848
  Copyright terms: Public domain W3C validator