MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arch Structured version   Visualization version   GIF version

Theorem arch 12446
Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
arch (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
Distinct variable group:   𝐴,𝑛

Proof of Theorem arch
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq1 5113 . . 3 (𝑦 = 𝐴 → (𝑦 < 𝑛𝐴 < 𝑛))
21rexbidv 3158 . 2 (𝑦 = 𝐴 → (∃𝑛 ∈ ℕ 𝑦 < 𝑛 ↔ ∃𝑛 ∈ ℕ 𝐴 < 𝑛))
3 nnunb 12445 . . . 4 ¬ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ (𝑛 < 𝑦𝑛 = 𝑦)
4 ralnex 3056 . . . 4 (∀𝑦 ∈ ℝ ¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦𝑛 = 𝑦) ↔ ¬ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ (𝑛 < 𝑦𝑛 = 𝑦))
53, 4mpbir 231 . . 3 𝑦 ∈ ℝ ¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦𝑛 = 𝑦)
6 rexnal 3083 . . . . 5 (∃𝑛 ∈ ℕ ¬ (𝑛 < 𝑦𝑛 = 𝑦) ↔ ¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦𝑛 = 𝑦))
7 nnre 12200 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
8 axlttri 11252 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑦 < 𝑛 ↔ ¬ (𝑦 = 𝑛𝑛 < 𝑦)))
97, 8sylan2 593 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑦 < 𝑛 ↔ ¬ (𝑦 = 𝑛𝑛 < 𝑦)))
10 equcom 2018 . . . . . . . . . . 11 (𝑦 = 𝑛𝑛 = 𝑦)
1110orbi1i 913 . . . . . . . . . 10 ((𝑦 = 𝑛𝑛 < 𝑦) ↔ (𝑛 = 𝑦𝑛 < 𝑦))
12 orcom 870 . . . . . . . . . 10 ((𝑛 = 𝑦𝑛 < 𝑦) ↔ (𝑛 < 𝑦𝑛 = 𝑦))
1311, 12bitri 275 . . . . . . . . 9 ((𝑦 = 𝑛𝑛 < 𝑦) ↔ (𝑛 < 𝑦𝑛 = 𝑦))
1413notbii 320 . . . . . . . 8 (¬ (𝑦 = 𝑛𝑛 < 𝑦) ↔ ¬ (𝑛 < 𝑦𝑛 = 𝑦))
159, 14bitrdi 287 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑦 < 𝑛 ↔ ¬ (𝑛 < 𝑦𝑛 = 𝑦)))
1615biimprd 248 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (¬ (𝑛 < 𝑦𝑛 = 𝑦) → 𝑦 < 𝑛))
1716reximdva 3147 . . . . 5 (𝑦 ∈ ℝ → (∃𝑛 ∈ ℕ ¬ (𝑛 < 𝑦𝑛 = 𝑦) → ∃𝑛 ∈ ℕ 𝑦 < 𝑛))
186, 17biimtrrid 243 . . . 4 (𝑦 ∈ ℝ → (¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦𝑛 = 𝑦) → ∃𝑛 ∈ ℕ 𝑦 < 𝑛))
1918ralimia 3064 . . 3 (∀𝑦 ∈ ℝ ¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦𝑛 = 𝑦) → ∀𝑦 ∈ ℝ ∃𝑛 ∈ ℕ 𝑦 < 𝑛)
205, 19ax-mp 5 . 2 𝑦 ∈ ℝ ∃𝑛 ∈ ℕ 𝑦 < 𝑛
212, 20vtoclri 3559 1 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  wrex 3054   class class class wbr 5110  cr 11074   < clt 11215  cn 12193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194
This theorem is referenced by:  nnrecl  12447  bndndx  12448  btwnz  12644  uzwo3  12909  zmin  12910  rpnnen1lem5  12947  harmonic  15832  alzdvds  16297  ovolicc2lem4  25428  volsup2  25513  ismbf3d  25562  mbfi1fseqlem6  25628  itg2seq  25650  itg2cnlem1  25669  ply1divex  26049  plydivex  26212  lgamucov  26955  lgamcvg2  26972  ubthlem1  30806  lnconi  31969  rearchi  33324  esumcst  34060  hbtlem5  43124  prmunb2  44307  rfcnnnub  45037  archd  45163  stoweidlem14  46019  stoweidlem60  46065  sge0rpcpnf  46426  hoicvr  46553  fsupdm  46847
  Copyright terms: Public domain W3C validator