![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > arch | Structured version Visualization version GIF version |
Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.) |
Ref | Expression |
---|---|
arch | ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5151 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 < 𝑛 ↔ 𝐴 < 𝑛)) | |
2 | 1 | rexbidv 3177 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑛 ∈ ℕ 𝑦 < 𝑛 ↔ ∃𝑛 ∈ ℕ 𝐴 < 𝑛)) |
3 | nnunb 12520 | . . . 4 ⊢ ¬ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) | |
4 | ralnex 3070 | . . . 4 ⊢ (∀𝑦 ∈ ℝ ¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) ↔ ¬ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦)) | |
5 | 3, 4 | mpbir 231 | . . 3 ⊢ ∀𝑦 ∈ ℝ ¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) |
6 | rexnal 3098 | . . . . 5 ⊢ (∃𝑛 ∈ ℕ ¬ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) ↔ ¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦)) | |
7 | nnre 12271 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
8 | axlttri 11330 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑦 < 𝑛 ↔ ¬ (𝑦 = 𝑛 ∨ 𝑛 < 𝑦))) | |
9 | 7, 8 | sylan2 593 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑦 < 𝑛 ↔ ¬ (𝑦 = 𝑛 ∨ 𝑛 < 𝑦))) |
10 | equcom 2015 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝑛 ↔ 𝑛 = 𝑦) | |
11 | 10 | orbi1i 913 | . . . . . . . . . 10 ⊢ ((𝑦 = 𝑛 ∨ 𝑛 < 𝑦) ↔ (𝑛 = 𝑦 ∨ 𝑛 < 𝑦)) |
12 | orcom 870 | . . . . . . . . . 10 ⊢ ((𝑛 = 𝑦 ∨ 𝑛 < 𝑦) ↔ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦)) | |
13 | 11, 12 | bitri 275 | . . . . . . . . 9 ⊢ ((𝑦 = 𝑛 ∨ 𝑛 < 𝑦) ↔ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦)) |
14 | 13 | notbii 320 | . . . . . . . 8 ⊢ (¬ (𝑦 = 𝑛 ∨ 𝑛 < 𝑦) ↔ ¬ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦)) |
15 | 9, 14 | bitrdi 287 | . . . . . . 7 ⊢ ((𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑦 < 𝑛 ↔ ¬ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦))) |
16 | 15 | biimprd 248 | . . . . . 6 ⊢ ((𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (¬ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) → 𝑦 < 𝑛)) |
17 | 16 | reximdva 3166 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (∃𝑛 ∈ ℕ ¬ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) → ∃𝑛 ∈ ℕ 𝑦 < 𝑛)) |
18 | 6, 17 | biimtrrid 243 | . . . 4 ⊢ (𝑦 ∈ ℝ → (¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) → ∃𝑛 ∈ ℕ 𝑦 < 𝑛)) |
19 | 18 | ralimia 3078 | . . 3 ⊢ (∀𝑦 ∈ ℝ ¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) → ∀𝑦 ∈ ℝ ∃𝑛 ∈ ℕ 𝑦 < 𝑛) |
20 | 5, 19 | ax-mp 5 | . 2 ⊢ ∀𝑦 ∈ ℝ ∃𝑛 ∈ ℕ 𝑦 < 𝑛 |
21 | 2, 20 | vtoclri 3590 | 1 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 class class class wbr 5148 ℝcr 11152 < clt 11293 ℕcn 12264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 |
This theorem is referenced by: nnrecl 12522 bndndx 12523 btwnz 12719 uzwo3 12983 zmin 12984 rpnnen1lem5 13021 harmonic 15892 alzdvds 16354 ovolicc2lem4 25569 volsup2 25654 ismbf3d 25703 mbfi1fseqlem6 25770 itg2seq 25792 itg2cnlem1 25811 ply1divex 26191 plydivex 26354 lgamucov 27096 lgamcvg2 27113 ubthlem1 30899 lnconi 32062 rearchi 33354 esumcst 34044 hbtlem5 43117 prmunb2 44307 rfcnnnub 44974 archd 45105 stoweidlem14 45970 stoweidlem60 46016 sge0rpcpnf 46377 hoicvr 46504 fsupdm 46798 |
Copyright terms: Public domain | W3C validator |