| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > arch | Structured version Visualization version GIF version | ||
| Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| arch | ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5092 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 < 𝑛 ↔ 𝐴 < 𝑛)) | |
| 2 | 1 | rexbidv 3156 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑛 ∈ ℕ 𝑦 < 𝑛 ↔ ∃𝑛 ∈ ℕ 𝐴 < 𝑛)) |
| 3 | nnunb 12377 | . . . 4 ⊢ ¬ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) | |
| 4 | ralnex 3058 | . . . 4 ⊢ (∀𝑦 ∈ ℝ ¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) ↔ ¬ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦)) | |
| 5 | 3, 4 | mpbir 231 | . . 3 ⊢ ∀𝑦 ∈ ℝ ¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) |
| 6 | rexnal 3084 | . . . . 5 ⊢ (∃𝑛 ∈ ℕ ¬ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) ↔ ¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦)) | |
| 7 | nnre 12132 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
| 8 | axlttri 11184 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝑦 < 𝑛 ↔ ¬ (𝑦 = 𝑛 ∨ 𝑛 < 𝑦))) | |
| 9 | 7, 8 | sylan2 593 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑦 < 𝑛 ↔ ¬ (𝑦 = 𝑛 ∨ 𝑛 < 𝑦))) |
| 10 | equcom 2019 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝑛 ↔ 𝑛 = 𝑦) | |
| 11 | 10 | orbi1i 913 | . . . . . . . . . 10 ⊢ ((𝑦 = 𝑛 ∨ 𝑛 < 𝑦) ↔ (𝑛 = 𝑦 ∨ 𝑛 < 𝑦)) |
| 12 | orcom 870 | . . . . . . . . . 10 ⊢ ((𝑛 = 𝑦 ∨ 𝑛 < 𝑦) ↔ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦)) | |
| 13 | 11, 12 | bitri 275 | . . . . . . . . 9 ⊢ ((𝑦 = 𝑛 ∨ 𝑛 < 𝑦) ↔ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦)) |
| 14 | 13 | notbii 320 | . . . . . . . 8 ⊢ (¬ (𝑦 = 𝑛 ∨ 𝑛 < 𝑦) ↔ ¬ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦)) |
| 15 | 9, 14 | bitrdi 287 | . . . . . . 7 ⊢ ((𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝑦 < 𝑛 ↔ ¬ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦))) |
| 16 | 15 | biimprd 248 | . . . . . 6 ⊢ ((𝑦 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (¬ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) → 𝑦 < 𝑛)) |
| 17 | 16 | reximdva 3145 | . . . . 5 ⊢ (𝑦 ∈ ℝ → (∃𝑛 ∈ ℕ ¬ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) → ∃𝑛 ∈ ℕ 𝑦 < 𝑛)) |
| 18 | 6, 17 | biimtrrid 243 | . . . 4 ⊢ (𝑦 ∈ ℝ → (¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) → ∃𝑛 ∈ ℕ 𝑦 < 𝑛)) |
| 19 | 18 | ralimia 3066 | . . 3 ⊢ (∀𝑦 ∈ ℝ ¬ ∀𝑛 ∈ ℕ (𝑛 < 𝑦 ∨ 𝑛 = 𝑦) → ∀𝑦 ∈ ℝ ∃𝑛 ∈ ℕ 𝑦 < 𝑛) |
| 20 | 5, 19 | ax-mp 5 | . 2 ⊢ ∀𝑦 ∈ ℝ ∃𝑛 ∈ ℕ 𝑦 < 𝑛 |
| 21 | 2, 20 | vtoclri 3540 | 1 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5089 ℝcr 11005 < clt 11146 ℕcn 12125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 |
| This theorem is referenced by: nnrecl 12379 bndndx 12380 btwnz 12576 uzwo3 12841 zmin 12842 rpnnen1lem5 12879 harmonic 15766 alzdvds 16231 ovolicc2lem4 25448 volsup2 25533 ismbf3d 25582 mbfi1fseqlem6 25648 itg2seq 25670 itg2cnlem1 25689 ply1divex 26069 plydivex 26232 lgamucov 26975 lgamcvg2 26992 ubthlem1 30850 lnconi 32013 rearchi 33311 esumcst 34076 hbtlem5 43231 prmunb2 44414 rfcnnnub 45143 archd 45269 stoweidlem14 46122 stoweidlem60 46168 sge0rpcpnf 46529 hoicvr 46656 fsupdm 46950 |
| Copyright terms: Public domain | W3C validator |