Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xnegeqi Structured version   Visualization version   GIF version

Theorem xnegeqi 45409
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
xnegeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
xnegeqi -𝑒𝐴 = -𝑒𝐵

Proof of Theorem xnegeqi
StepHypRef Expression
1 xnegeqi.1 . 2 𝐴 = 𝐵
2 xnegeq 13180 . 2 (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)
31, 2ax-mp 5 1 -𝑒𝐴 = -𝑒𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  -𝑒cxne 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-iota 6472  df-fv 6527  df-ov 7397  df-neg 11426  df-xneg 13085
This theorem is referenced by:  supminfxr2  45438  liminfvalxr  45754  liminf0  45764  liminfpnfuz  45787
  Copyright terms: Public domain W3C validator