| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xnegeqi | Structured version Visualization version GIF version | ||
| Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| xnegeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xnegeqi | ⊢ -𝑒𝐴 = -𝑒𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xnegeq 13230 | . 2 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝑒𝐴 = -𝑒𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 -𝑒cxne 13132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6493 df-fv 6548 df-ov 7415 df-neg 11476 df-xneg 13135 |
| This theorem is referenced by: supminfxr2 45413 liminfvalxr 45731 liminf0 45741 liminfpnfuz 45764 |
| Copyright terms: Public domain | W3C validator |