Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xnegeqi Structured version   Visualization version   GIF version

Theorem xnegeqi 45457
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
xnegeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
xnegeqi -𝑒𝐴 = -𝑒𝐵

Proof of Theorem xnegeqi
StepHypRef Expression
1 xnegeqi.1 . 2 𝐴 = 𝐵
2 xnegeq 13098 . 2 (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)
31, 2ax-mp 5 1 -𝑒𝐴 = -𝑒𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  -𝑒cxne 13000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-iota 6433  df-fv 6485  df-ov 7344  df-neg 11339  df-xneg 13003
This theorem is referenced by:  supminfxr2  45486  liminfvalxr  45800  liminf0  45810  liminfpnfuz  45833
  Copyright terms: Public domain W3C validator