Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xnegeqi Structured version   Visualization version   GIF version

Theorem xnegeqi 42870
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
xnegeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
xnegeqi -𝑒𝐴 = -𝑒𝐵

Proof of Theorem xnegeqi
StepHypRef Expression
1 xnegeqi.1 . 2 𝐴 = 𝐵
2 xnegeq 12870 . 2 (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵)
31, 2ax-mp 5 1 -𝑒𝐴 = -𝑒𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  -𝑒cxne 12774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-neg 11138  df-xneg 12777
This theorem is referenced by:  supminfxr2  42899  liminfvalxr  43214  liminf0  43224  liminfpnfuz  43247
  Copyright terms: Public domain W3C validator