| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xnegeqi | Structured version Visualization version GIF version | ||
| Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| xnegeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xnegeqi | ⊢ -𝑒𝐴 = -𝑒𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xnegeq 13098 | . 2 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝑒𝐴 = -𝑒𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 -𝑒cxne 13000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ov 7344 df-neg 11339 df-xneg 13003 |
| This theorem is referenced by: supminfxr2 45486 liminfvalxr 45800 liminf0 45810 liminfpnfuz 45833 |
| Copyright terms: Public domain | W3C validator |