![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xnegeqi | Structured version Visualization version GIF version |
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
xnegeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
xnegeqi | ⊢ -𝑒𝐴 = -𝑒𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xnegeq 13252 | . 2 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝑒𝐴 = -𝑒𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 -𝑒cxne 13155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-iota 6519 df-fv 6574 df-ov 7438 df-neg 11499 df-xneg 13158 |
This theorem is referenced by: supminfxr2 45431 liminfvalxr 45750 liminf0 45760 liminfpnfuz 45783 |
Copyright terms: Public domain | W3C validator |