| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xnegeqi | Structured version Visualization version GIF version | ||
| Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| xnegeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xnegeqi | ⊢ -𝑒𝐴 = -𝑒𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xnegeq 13108 | . 2 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -𝑒𝐴 = -𝑒𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 -𝑒cxne 13010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-neg 11354 df-xneg 13013 |
| This theorem is referenced by: supminfxr2 45591 liminfvalxr 45905 liminf0 45915 liminfpnfuz 45938 |
| Copyright terms: Public domain | W3C validator |