Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfvalxr Structured version   Visualization version   GIF version

Theorem liminfvalxr 41441
Description: Alternate definition of lim inf when 𝐹 is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfvalxr.1 𝑥𝐹
liminfvalxr.2 (𝜑𝐴𝑉)
liminfvalxr.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
liminfvalxr (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem liminfvalxr
Dummy variables 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nftru 1767 . . . . . . 7 𝑘
2 inss2 4088 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
3 infxrcl 12535 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
42, 3ax-mp 5 . . . . . . . 8 inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
54a1i 11 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℝ) → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
61, 5supminfxrrnmpt 41124 . . . . . 6 (⊤ → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
76mptru 1514 . . . . 5 sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )
87a1i 11 . . . 4 (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
9 tru 1511 . . . . . . . . . . 11
10 inss2 4088 . . . . . . . . . . . . 13 (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
1110a1i 11 . . . . . . . . . . . 12 (⊤ → (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
1211supminfxr2 41122 . . . . . . . . . . 11 (⊤ → sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ))
139, 12ax-mp 5 . . . . . . . . . 10 sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < )
1413a1i 11 . . . . . . . . 9 (𝜑 → sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ))
15 elinel1 4056 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
16 nfmpt1 5019 . . . . . . . . . . . . . . . . . 18 𝑦(𝑦𝐴 ↦ -𝑒(𝐹𝑦))
17 xnegex 12411 . . . . . . . . . . . . . . . . . . . . 21 -𝑒(𝐹𝑦) ∈ V
18 eqid 2772 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) = (𝑦𝐴 ↦ -𝑒(𝐹𝑦))
1917, 18fnmpti 6315 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴
2019a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴)
2120adantr 473 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴)
22 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
2316, 21, 22fvelimad 40891 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
24233adant2 1111 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
2515, 24syl3an3 1145 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
26 elinel2 4057 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) → -𝑒𝑧 ∈ ℝ*)
27 elinel1 4056 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑦𝐴)
2817a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → -𝑒(𝐹𝑦) ∈ V)
2918fvmpt2 6599 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐴 ∧ -𝑒(𝐹𝑦) ∈ V) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒(𝐹𝑦))
3027, 28, 29syl2anc 576 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒(𝐹𝑦))
3130eqcomd 2778 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → -𝑒(𝐹𝑦) = ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦))
3231adantr 473 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦))
33 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
3432, 33eqtrd 2808 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = -𝑒𝑧)
3534adantll 701 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = -𝑒𝑧)
36 eqcom 2779 . . . . . . . . . . . . . . . . . . . . . . 23 (-𝑒(𝐹𝑦) = -𝑒𝑧 ↔ -𝑒𝑧 = -𝑒(𝐹𝑦))
3736biimpi 208 . . . . . . . . . . . . . . . . . . . . . 22 (-𝑒(𝐹𝑦) = -𝑒𝑧 → -𝑒𝑧 = -𝑒(𝐹𝑦))
3837adantl 474 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
39 simplr 756 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑧 ∈ ℝ*)
40 liminfvalxr.3 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:𝐴⟶ℝ*)
4140adantr 473 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝐹:𝐴⟶ℝ*)
4227adantl 474 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦𝐴)
4341, 42ffvelrnd 6671 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ ℝ*)
4443adantlr 702 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ ℝ*)
45 xneg11 12418 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) ∈ ℝ*) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4639, 44, 45syl2anc 576 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4746adantr 473 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4838, 47mpbid 224 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → 𝑧 = (𝐹𝑦))
4940ffund 6342 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → Fun 𝐹)
5049, 27anim12i 603 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (Fun 𝐹𝑦𝐴))
5150simpld 487 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → Fun 𝐹)
5240fdmd 6347 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → dom 𝐹 = 𝐴)
5352eqcomd 2778 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 = dom 𝐹)
5453adantr 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝐴 = dom 𝐹)
5542, 54eleqtrd 2862 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦 ∈ dom 𝐹)
5651, 55jca 504 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (Fun 𝐹𝑦 ∈ dom 𝐹))
57 elinel2 4057 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑦 ∈ (𝑘[,)+∞))
5857adantl 474 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦 ∈ (𝑘[,)+∞))
59 funfvima 6812 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑦 ∈ (𝑘[,)+∞) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞))))
6056, 58, 59sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞)))
6160ad4ant13 738 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞)))
6248, 61eqeltrd 2860 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6335, 62syldan 582 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6463rexlimdva2 3226 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
65643adant3 1112 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
6626, 65syl3an3 1145 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
6725, 66mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6867rabssdv 3937 . . . . . . . . . . . . 13 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ (𝐹 “ (𝑘[,)+∞)))
69 ssrab2 3942 . . . . . . . . . . . . . 14 {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ℝ*
7069a1i 11 . . . . . . . . . . . . 13 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ℝ*)
7168, 70ssind 4091 . . . . . . . . . . . 12 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
722a1i 11 . . . . . . . . . . . . 13 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
7340ffnd 6339 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝐴)
7473adantr 473 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝐹 Fn 𝐴)
75 elinel1 4056 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
7675adantl 474 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
77 fvelima2 40906 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴𝑧 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧)
7874, 76, 77syl2anc 576 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧)
79 elinel2 4057 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑧 ∈ ℝ*)
80 eqcom 2779 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑦) = 𝑧𝑧 = (𝐹𝑦))
8180biimpi 208 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑦) = 𝑧𝑧 = (𝐹𝑦))
8281adantl 474 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 = (𝐹𝑦))
8382xnegeqd 41088 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
84 simpl 475 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 ∈ ℝ*)
8582, 84eqeltrrd 2861 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → (𝐹𝑦) ∈ ℝ*)
8684, 85, 45syl2anc 576 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
8783, 86mpbid 224 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 = (𝐹𝑦))
8887xnegeqd 41088 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
8988ex 405 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ* → ((𝐹𝑦) = 𝑧 → -𝑒𝑧 = -𝑒(𝐹𝑦)))
9089reximdv 3212 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ* → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9179, 90syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9291adantl 474 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9378, 92mpd 15 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦))
94 xnegex 12411 . . . . . . . . . . . . . . . 16 -𝑒𝑧 ∈ V
95 elmptima 40904 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ V → (-𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ↔ ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9694, 95ax-mp 5 . . . . . . . . . . . . . . 15 (-𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ↔ ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦))
9793, 96sylibr 226 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
9872sselda 3854 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ ℝ*)
9998xnegcld 12502 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ ℝ*)
10097, 99elind 4055 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*))
10172, 100ssrabdv 3936 . . . . . . . . . . . 12 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)})
10271, 101eqssd 3871 . . . . . . . . . . 11 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
103102infeq1d 8728 . . . . . . . . . 10 (𝜑 → inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
104103xnegeqd 41088 . . . . . . . . 9 (𝜑 → -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ) = -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
10514, 104eqtr2d 2809 . . . . . . . 8 (𝜑 → -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
106105mpteq2dv 5017 . . . . . . 7 (𝜑 → (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
107106rneqd 5644 . . . . . 6 (𝜑 → ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
108107infeq1d 8728 . . . . 5 (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
109108xnegeqd 41088 . . . 4 (𝜑 → -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
1108, 109eqtrd 2808 . . 3 (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
111 liminfvalxr.2 . . . . 5 (𝜑𝐴𝑉)
11240, 111fexd 40748 . . . 4 (𝜑𝐹 ∈ V)
113 eqid 2772 . . . . 5 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
114113liminfval 41417 . . . 4 (𝐹 ∈ V → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
115112, 114syl 17 . . 3 (𝜑 → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
116111mptexd 6807 . . . . 5 (𝜑 → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) ∈ V)
117 eqid 2772 . . . . . 6 (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
118117limsupval 14682 . . . . 5 ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) ∈ V → (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
119116, 118syl 17 . . . 4 (𝜑 → (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
120119xnegeqd 41088 . . 3 (𝜑 → -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
121110, 115, 1203eqtr4d 2818 . 2 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))))
122 liminfvalxr.1 . . . . . . . 8 𝑥𝐹
123 nfcv 2926 . . . . . . . 8 𝑥𝑦
124122, 123nffv 6503 . . . . . . 7 𝑥(𝐹𝑦)
125124nfxneg 41114 . . . . . 6 𝑥-𝑒(𝐹𝑦)
126 nfcv 2926 . . . . . 6 𝑦-𝑒(𝐹𝑥)
127 fveq2 6493 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
128127xnegeqd 41088 . . . . . 6 (𝑦 = 𝑥 → -𝑒(𝐹𝑦) = -𝑒(𝐹𝑥))
129125, 126, 128cbvmpt 5021 . . . . 5 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) = (𝑥𝐴 ↦ -𝑒(𝐹𝑥))
130129fveq2i 6496 . . . 4 (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = (lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥)))
131130xnegeqi 41091 . . 3 -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥)))
132131a1i 11 . 2 (𝜑 → -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
133121, 132eqtrd 2808 1 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wtru 1508  wcel 2048  wnfc 2910  wrex 3083  {crab 3086  Vcvv 3409  cin 3824  wss 3825  cmpt 5002  dom cdm 5400  ran crn 5401  cima 5403  Fun wfun 6176   Fn wfn 6177  wf 6178  cfv 6182  (class class class)co 6970  supcsup 8691  infcinf 8692  cr 10326  +∞cpnf 10463  *cxr 10465   < clt 10466  -𝑒cxne 12314  [,)cico 12549  lim supclsp 14678  lim infclsi 41409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-po 5319  df-so 5320  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-sup 8693  df-inf 8694  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-xneg 12317  df-limsup 14679  df-liminf 41410
This theorem is referenced by:  liminfvalxrmpt  41444
  Copyright terms: Public domain W3C validator