Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfvalxr Structured version   Visualization version   GIF version

Theorem liminfvalxr 45905
Description: Alternate definition of lim inf when 𝐹 is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfvalxr.1 𝑥𝐹
liminfvalxr.2 (𝜑𝐴𝑉)
liminfvalxr.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
liminfvalxr (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem liminfvalxr
Dummy variables 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nftru 1805 . . . . . . 7 𝑘
2 inss2 4187 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
3 infxrcl 13235 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
42, 3ax-mp 5 . . . . . . . 8 inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
54a1i 11 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℝ) → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
61, 5supminfxrrnmpt 45593 . . . . . 6 (⊤ → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
76mptru 1548 . . . . 5 sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )
87a1i 11 . . . 4 (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
9 tru 1545 . . . . . . . . . . 11
10 inss2 4187 . . . . . . . . . . . . 13 (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
1110a1i 11 . . . . . . . . . . . 12 (⊤ → (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
1211supminfxr2 45591 . . . . . . . . . . 11 (⊤ → sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ))
139, 12ax-mp 5 . . . . . . . . . 10 sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < )
1413a1i 11 . . . . . . . . 9 (𝜑 → sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ))
15 elinel1 4150 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
16 nfmpt1 5192 . . . . . . . . . . . . . . . . . 18 𝑦(𝑦𝐴 ↦ -𝑒(𝐹𝑦))
17 xnegex 13109 . . . . . . . . . . . . . . . . . . . . 21 -𝑒(𝐹𝑦) ∈ V
18 eqid 2733 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) = (𝑦𝐴 ↦ -𝑒(𝐹𝑦))
1917, 18fnmpti 6629 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴
2019a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴)
2120adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴)
22 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
2316, 21, 22fvelimad 6895 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
24233adant2 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
2515, 24syl3an3 1165 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
26 elinel2 4151 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) → -𝑒𝑧 ∈ ℝ*)
27 elinel1 4150 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑦𝐴)
2817a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → -𝑒(𝐹𝑦) ∈ V)
2918fvmpt2 6946 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐴 ∧ -𝑒(𝐹𝑦) ∈ V) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒(𝐹𝑦))
3027, 28, 29syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒(𝐹𝑦))
3130eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → -𝑒(𝐹𝑦) = ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦))
3231adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦))
33 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
3432, 33eqtrd 2768 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = -𝑒𝑧)
3534adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = -𝑒𝑧)
36 eqcom 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (-𝑒(𝐹𝑦) = -𝑒𝑧 ↔ -𝑒𝑧 = -𝑒(𝐹𝑦))
3736biimpi 216 . . . . . . . . . . . . . . . . . . . . . 22 (-𝑒(𝐹𝑦) = -𝑒𝑧 → -𝑒𝑧 = -𝑒(𝐹𝑦))
3837adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
39 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑧 ∈ ℝ*)
40 liminfvalxr.3 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:𝐴⟶ℝ*)
4140adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝐹:𝐴⟶ℝ*)
4227adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦𝐴)
4341, 42ffvelcdmd 7024 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ ℝ*)
4443adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ ℝ*)
45 xneg11 13116 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) ∈ ℝ*) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4639, 44, 45syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4746adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4838, 47mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → 𝑧 = (𝐹𝑦))
4940ffund 6660 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → Fun 𝐹)
5049, 27anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (Fun 𝐹𝑦𝐴))
5150simpld 494 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → Fun 𝐹)
5240fdmd 6666 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → dom 𝐹 = 𝐴)
5352eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 = dom 𝐹)
5453adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝐴 = dom 𝐹)
5542, 54eleqtrd 2835 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦 ∈ dom 𝐹)
5651, 55jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (Fun 𝐹𝑦 ∈ dom 𝐹))
57 elinel2 4151 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑦 ∈ (𝑘[,)+∞))
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦 ∈ (𝑘[,)+∞))
59 funfvima 7170 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑦 ∈ (𝑘[,)+∞) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞))))
6056, 58, 59sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞)))
6160ad4ant13 751 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞)))
6248, 61eqeltrd 2833 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6335, 62syldan 591 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6463rexlimdva2 3136 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
65643adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
6626, 65syl3an3 1165 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
6725, 66mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6867rabssdv 4023 . . . . . . . . . . . . 13 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ (𝐹 “ (𝑘[,)+∞)))
69 ssrab2 4029 . . . . . . . . . . . . . 14 {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ℝ*
7069a1i 11 . . . . . . . . . . . . 13 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ℝ*)
7168, 70ssind 4190 . . . . . . . . . . . 12 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
722a1i 11 . . . . . . . . . . . . 13 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
7340ffnd 6657 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝐴)
7473adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝐹 Fn 𝐴)
75 elinel1 4150 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
7675adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
77 fvelima2 6880 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴𝑧 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧)
7874, 76, 77syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧)
79 elinel2 4151 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑧 ∈ ℝ*)
80 eqcom 2740 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑦) = 𝑧𝑧 = (𝐹𝑦))
8180biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑦) = 𝑧𝑧 = (𝐹𝑦))
8281adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 = (𝐹𝑦))
8382xnegeqd 45559 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
84 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 ∈ ℝ*)
8582, 84eqeltrrd 2834 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → (𝐹𝑦) ∈ ℝ*)
8684, 85, 45syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
8783, 86mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 = (𝐹𝑦))
8887xnegeqd 45559 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
8988ex 412 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ* → ((𝐹𝑦) = 𝑧 → -𝑒𝑧 = -𝑒(𝐹𝑦)))
9089reximdv 3148 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ* → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9179, 90syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9291adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9378, 92mpd 15 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦))
94 xnegex 13109 . . . . . . . . . . . . . . . 16 -𝑒𝑧 ∈ V
95 elmptima 45379 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ V → (-𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ↔ ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9694, 95ax-mp 5 . . . . . . . . . . . . . . 15 (-𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ↔ ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦))
9793, 96sylibr 234 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
9872sselda 3930 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ ℝ*)
9998xnegcld 13201 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ ℝ*)
10097, 99elind 4149 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*))
10172, 100ssrabdv 4022 . . . . . . . . . . . 12 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)})
10271, 101eqssd 3948 . . . . . . . . . . 11 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
103102infeq1d 9369 . . . . . . . . . 10 (𝜑 → inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
104103xnegeqd 45559 . . . . . . . . 9 (𝜑 → -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ) = -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
10514, 104eqtr2d 2769 . . . . . . . 8 (𝜑 → -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
106105mpteq2dv 5187 . . . . . . 7 (𝜑 → (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
107106rneqd 5882 . . . . . 6 (𝜑 → ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
108107infeq1d 9369 . . . . 5 (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
109108xnegeqd 45559 . . . 4 (𝜑 → -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
1108, 109eqtrd 2768 . . 3 (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
111 liminfvalxr.2 . . . . 5 (𝜑𝐴𝑉)
11240, 111fexd 7167 . . . 4 (𝜑𝐹 ∈ V)
113 eqid 2733 . . . . 5 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
114113liminfval 45881 . . . 4 (𝐹 ∈ V → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
115112, 114syl 17 . . 3 (𝜑 → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
116111mptexd 7164 . . . . 5 (𝜑 → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) ∈ V)
117 eqid 2733 . . . . . 6 (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
118117limsupval 15383 . . . . 5 ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) ∈ V → (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
119116, 118syl 17 . . . 4 (𝜑 → (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
120119xnegeqd 45559 . . 3 (𝜑 → -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
121110, 115, 1203eqtr4d 2778 . 2 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))))
122 liminfvalxr.1 . . . . . . . 8 𝑥𝐹
123 nfcv 2895 . . . . . . . 8 𝑥𝑦
124122, 123nffv 6838 . . . . . . 7 𝑥(𝐹𝑦)
125124nfxneg 45583 . . . . . 6 𝑥-𝑒(𝐹𝑦)
126 nfcv 2895 . . . . . 6 𝑦-𝑒(𝐹𝑥)
127 fveq2 6828 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
128127xnegeqd 45559 . . . . . 6 (𝑦 = 𝑥 → -𝑒(𝐹𝑦) = -𝑒(𝐹𝑥))
129125, 126, 128cbvmpt 5195 . . . . 5 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) = (𝑥𝐴 ↦ -𝑒(𝐹𝑥))
130129fveq2i 6831 . . . 4 (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = (lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥)))
131130xnegeqi 45562 . . 3 -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥)))
132131a1i 11 . 2 (𝜑 → -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
133121, 132eqtrd 2768 1 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2113  wnfc 2880  wrex 3057  {crab 3396  Vcvv 3437  cin 3897  wss 3898  cmpt 5174  dom cdm 5619  ran crn 5620  cima 5622  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  supcsup 9331  infcinf 9332  cr 11012  +∞cpnf 11150  *cxr 11152   < clt 11153  -𝑒cxne 13010  [,)cico 13249  lim supclsp 15379  lim infclsi 45873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-xneg 13013  df-limsup 15380  df-liminf 45874
This theorem is referenced by:  liminfvalxrmpt  45908
  Copyright terms: Public domain W3C validator