Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfvalxr Structured version   Visualization version   GIF version

Theorem liminfvalxr 45765
Description: Alternate definition of lim inf when 𝐹 is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfvalxr.1 𝑥𝐹
liminfvalxr.2 (𝜑𝐴𝑉)
liminfvalxr.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
liminfvalxr (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem liminfvalxr
Dummy variables 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nftru 1804 . . . . . . 7 𝑘
2 inss2 4191 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
3 infxrcl 13254 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
42, 3ax-mp 5 . . . . . . . 8 inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
54a1i 11 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℝ) → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
61, 5supminfxrrnmpt 45451 . . . . . 6 (⊤ → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
76mptru 1547 . . . . 5 sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )
87a1i 11 . . . 4 (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
9 tru 1544 . . . . . . . . . . 11
10 inss2 4191 . . . . . . . . . . . . 13 (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
1110a1i 11 . . . . . . . . . . . 12 (⊤ → (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
1211supminfxr2 45449 . . . . . . . . . . 11 (⊤ → sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ))
139, 12ax-mp 5 . . . . . . . . . 10 sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < )
1413a1i 11 . . . . . . . . 9 (𝜑 → sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ))
15 elinel1 4154 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
16 nfmpt1 5194 . . . . . . . . . . . . . . . . . 18 𝑦(𝑦𝐴 ↦ -𝑒(𝐹𝑦))
17 xnegex 13128 . . . . . . . . . . . . . . . . . . . . 21 -𝑒(𝐹𝑦) ∈ V
18 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) = (𝑦𝐴 ↦ -𝑒(𝐹𝑦))
1917, 18fnmpti 6629 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴
2019a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴)
2120adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴)
22 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
2316, 21, 22fvelimad 6894 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
24233adant2 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
2515, 24syl3an3 1165 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
26 elinel2 4155 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) → -𝑒𝑧 ∈ ℝ*)
27 elinel1 4154 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑦𝐴)
2817a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → -𝑒(𝐹𝑦) ∈ V)
2918fvmpt2 6945 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐴 ∧ -𝑒(𝐹𝑦) ∈ V) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒(𝐹𝑦))
3027, 28, 29syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒(𝐹𝑦))
3130eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → -𝑒(𝐹𝑦) = ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦))
3231adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦))
33 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
3432, 33eqtrd 2764 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = -𝑒𝑧)
3534adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = -𝑒𝑧)
36 eqcom 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (-𝑒(𝐹𝑦) = -𝑒𝑧 ↔ -𝑒𝑧 = -𝑒(𝐹𝑦))
3736biimpi 216 . . . . . . . . . . . . . . . . . . . . . 22 (-𝑒(𝐹𝑦) = -𝑒𝑧 → -𝑒𝑧 = -𝑒(𝐹𝑦))
3837adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
39 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑧 ∈ ℝ*)
40 liminfvalxr.3 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:𝐴⟶ℝ*)
4140adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝐹:𝐴⟶ℝ*)
4227adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦𝐴)
4341, 42ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ ℝ*)
4443adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ ℝ*)
45 xneg11 13135 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) ∈ ℝ*) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4639, 44, 45syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4746adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4838, 47mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → 𝑧 = (𝐹𝑦))
4940ffund 6660 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → Fun 𝐹)
5049, 27anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (Fun 𝐹𝑦𝐴))
5150simpld 494 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → Fun 𝐹)
5240fdmd 6666 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → dom 𝐹 = 𝐴)
5352eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 = dom 𝐹)
5453adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝐴 = dom 𝐹)
5542, 54eleqtrd 2830 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦 ∈ dom 𝐹)
5651, 55jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (Fun 𝐹𝑦 ∈ dom 𝐹))
57 elinel2 4155 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑦 ∈ (𝑘[,)+∞))
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦 ∈ (𝑘[,)+∞))
59 funfvima 7170 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑦 ∈ (𝑘[,)+∞) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞))))
6056, 58, 59sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞)))
6160ad4ant13 751 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞)))
6248, 61eqeltrd 2828 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6335, 62syldan 591 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6463rexlimdva2 3132 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
65643adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
6626, 65syl3an3 1165 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
6725, 66mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6867rabssdv 4028 . . . . . . . . . . . . 13 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ (𝐹 “ (𝑘[,)+∞)))
69 ssrab2 4033 . . . . . . . . . . . . . 14 {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ℝ*
7069a1i 11 . . . . . . . . . . . . 13 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ℝ*)
7168, 70ssind 4194 . . . . . . . . . . . 12 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
722a1i 11 . . . . . . . . . . . . 13 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
7340ffnd 6657 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝐴)
7473adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝐹 Fn 𝐴)
75 elinel1 4154 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
7675adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
77 fvelima2 6879 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴𝑧 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧)
7874, 76, 77syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧)
79 elinel2 4155 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑧 ∈ ℝ*)
80 eqcom 2736 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑦) = 𝑧𝑧 = (𝐹𝑦))
8180biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑦) = 𝑧𝑧 = (𝐹𝑦))
8281adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 = (𝐹𝑦))
8382xnegeqd 45417 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
84 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 ∈ ℝ*)
8582, 84eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → (𝐹𝑦) ∈ ℝ*)
8684, 85, 45syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
8783, 86mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 = (𝐹𝑦))
8887xnegeqd 45417 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
8988ex 412 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ* → ((𝐹𝑦) = 𝑧 → -𝑒𝑧 = -𝑒(𝐹𝑦)))
9089reximdv 3144 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ* → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9179, 90syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9291adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9378, 92mpd 15 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦))
94 xnegex 13128 . . . . . . . . . . . . . . . 16 -𝑒𝑧 ∈ V
95 elmptima 45236 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ V → (-𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ↔ ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9694, 95ax-mp 5 . . . . . . . . . . . . . . 15 (-𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ↔ ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦))
9793, 96sylibr 234 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
9872sselda 3937 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ ℝ*)
9998xnegcld 13220 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ ℝ*)
10097, 99elind 4153 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*))
10172, 100ssrabdv 4027 . . . . . . . . . . . 12 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)})
10271, 101eqssd 3955 . . . . . . . . . . 11 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
103102infeq1d 9387 . . . . . . . . . 10 (𝜑 → inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
104103xnegeqd 45417 . . . . . . . . 9 (𝜑 → -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ) = -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
10514, 104eqtr2d 2765 . . . . . . . 8 (𝜑 → -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
106105mpteq2dv 5189 . . . . . . 7 (𝜑 → (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
107106rneqd 5884 . . . . . 6 (𝜑 → ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
108107infeq1d 9387 . . . . 5 (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
109108xnegeqd 45417 . . . 4 (𝜑 → -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
1108, 109eqtrd 2764 . . 3 (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
111 liminfvalxr.2 . . . . 5 (𝜑𝐴𝑉)
11240, 111fexd 7167 . . . 4 (𝜑𝐹 ∈ V)
113 eqid 2729 . . . . 5 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
114113liminfval 45741 . . . 4 (𝐹 ∈ V → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
115112, 114syl 17 . . 3 (𝜑 → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
116111mptexd 7164 . . . . 5 (𝜑 → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) ∈ V)
117 eqid 2729 . . . . . 6 (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
118117limsupval 15399 . . . . 5 ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) ∈ V → (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
119116, 118syl 17 . . . 4 (𝜑 → (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
120119xnegeqd 45417 . . 3 (𝜑 → -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
121110, 115, 1203eqtr4d 2774 . 2 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))))
122 liminfvalxr.1 . . . . . . . 8 𝑥𝐹
123 nfcv 2891 . . . . . . . 8 𝑥𝑦
124122, 123nffv 6836 . . . . . . 7 𝑥(𝐹𝑦)
125124nfxneg 45441 . . . . . 6 𝑥-𝑒(𝐹𝑦)
126 nfcv 2891 . . . . . 6 𝑦-𝑒(𝐹𝑥)
127 fveq2 6826 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
128127xnegeqd 45417 . . . . . 6 (𝑦 = 𝑥 → -𝑒(𝐹𝑦) = -𝑒(𝐹𝑥))
129125, 126, 128cbvmpt 5197 . . . . 5 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) = (𝑥𝐴 ↦ -𝑒(𝐹𝑥))
130129fveq2i 6829 . . . 4 (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = (lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥)))
131130xnegeqi 45420 . . 3 -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥)))
132131a1i 11 . 2 (𝜑 → -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
133121, 132eqtrd 2764 1 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wnfc 2876  wrex 3053  {crab 3396  Vcvv 3438  cin 3904  wss 3905  cmpt 5176  dom cdm 5623  ran crn 5624  cima 5626  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  supcsup 9349  infcinf 9350  cr 11027  +∞cpnf 11165  *cxr 11167   < clt 11168  -𝑒cxne 13029  [,)cico 13268  lim supclsp 15395  lim infclsi 45733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-xneg 13032  df-limsup 15396  df-liminf 45734
This theorem is referenced by:  liminfvalxrmpt  45768
  Copyright terms: Public domain W3C validator