Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfvalxr Structured version   Visualization version   GIF version

Theorem liminfvalxr 45739
Description: Alternate definition of lim inf when 𝐹 is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfvalxr.1 𝑥𝐹
liminfvalxr.2 (𝜑𝐴𝑉)
liminfvalxr.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
liminfvalxr (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem liminfvalxr
Dummy variables 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nftru 1801 . . . . . . 7 𝑘
2 inss2 4246 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
3 infxrcl 13372 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
42, 3ax-mp 5 . . . . . . . 8 inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
54a1i 11 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℝ) → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
61, 5supminfxrrnmpt 45421 . . . . . 6 (⊤ → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
76mptru 1544 . . . . 5 sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )
87a1i 11 . . . 4 (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
9 tru 1541 . . . . . . . . . . 11
10 inss2 4246 . . . . . . . . . . . . 13 (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
1110a1i 11 . . . . . . . . . . . 12 (⊤ → (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
1211supminfxr2 45419 . . . . . . . . . . 11 (⊤ → sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ))
139, 12ax-mp 5 . . . . . . . . . 10 sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < )
1413a1i 11 . . . . . . . . 9 (𝜑 → sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ))
15 elinel1 4211 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
16 nfmpt1 5256 . . . . . . . . . . . . . . . . . 18 𝑦(𝑦𝐴 ↦ -𝑒(𝐹𝑦))
17 xnegex 13247 . . . . . . . . . . . . . . . . . . . . 21 -𝑒(𝐹𝑦) ∈ V
18 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) = (𝑦𝐴 ↦ -𝑒(𝐹𝑦))
1917, 18fnmpti 6712 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴
2019a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴)
2120adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴)
22 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
2316, 21, 22fvelimad 6976 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
24233adant2 1130 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
2515, 24syl3an3 1164 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
26 elinel2 4212 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) → -𝑒𝑧 ∈ ℝ*)
27 elinel1 4211 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑦𝐴)
2817a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → -𝑒(𝐹𝑦) ∈ V)
2918fvmpt2 7027 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐴 ∧ -𝑒(𝐹𝑦) ∈ V) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒(𝐹𝑦))
3027, 28, 29syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒(𝐹𝑦))
3130eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → -𝑒(𝐹𝑦) = ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦))
3231adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦))
33 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
3432, 33eqtrd 2775 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = -𝑒𝑧)
3534adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = -𝑒𝑧)
36 eqcom 2742 . . . . . . . . . . . . . . . . . . . . . . 23 (-𝑒(𝐹𝑦) = -𝑒𝑧 ↔ -𝑒𝑧 = -𝑒(𝐹𝑦))
3736biimpi 216 . . . . . . . . . . . . . . . . . . . . . 22 (-𝑒(𝐹𝑦) = -𝑒𝑧 → -𝑒𝑧 = -𝑒(𝐹𝑦))
3837adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
39 simplr 769 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑧 ∈ ℝ*)
40 liminfvalxr.3 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:𝐴⟶ℝ*)
4140adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝐹:𝐴⟶ℝ*)
4227adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦𝐴)
4341, 42ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ ℝ*)
4443adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ ℝ*)
45 xneg11 13254 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) ∈ ℝ*) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4639, 44, 45syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4746adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4838, 47mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → 𝑧 = (𝐹𝑦))
4940ffund 6741 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → Fun 𝐹)
5049, 27anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (Fun 𝐹𝑦𝐴))
5150simpld 494 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → Fun 𝐹)
5240fdmd 6747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → dom 𝐹 = 𝐴)
5352eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 = dom 𝐹)
5453adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝐴 = dom 𝐹)
5542, 54eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦 ∈ dom 𝐹)
5651, 55jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (Fun 𝐹𝑦 ∈ dom 𝐹))
57 elinel2 4212 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑦 ∈ (𝑘[,)+∞))
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦 ∈ (𝑘[,)+∞))
59 funfvima 7250 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑦 ∈ (𝑘[,)+∞) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞))))
6056, 58, 59sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞)))
6160ad4ant13 751 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞)))
6248, 61eqeltrd 2839 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6335, 62syldan 591 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6463rexlimdva2 3155 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
65643adant3 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
6626, 65syl3an3 1164 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
6725, 66mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6867rabssdv 4085 . . . . . . . . . . . . 13 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ (𝐹 “ (𝑘[,)+∞)))
69 ssrab2 4090 . . . . . . . . . . . . . 14 {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ℝ*
7069a1i 11 . . . . . . . . . . . . 13 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ℝ*)
7168, 70ssind 4249 . . . . . . . . . . . 12 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
722a1i 11 . . . . . . . . . . . . 13 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
7340ffnd 6738 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝐴)
7473adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝐹 Fn 𝐴)
75 elinel1 4211 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
7675adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
77 fvelima2 45205 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴𝑧 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧)
7874, 76, 77syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧)
79 elinel2 4212 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑧 ∈ ℝ*)
80 eqcom 2742 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑦) = 𝑧𝑧 = (𝐹𝑦))
8180biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑦) = 𝑧𝑧 = (𝐹𝑦))
8281adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 = (𝐹𝑦))
8382xnegeqd 45387 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
84 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 ∈ ℝ*)
8582, 84eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → (𝐹𝑦) ∈ ℝ*)
8684, 85, 45syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
8783, 86mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 = (𝐹𝑦))
8887xnegeqd 45387 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
8988ex 412 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ* → ((𝐹𝑦) = 𝑧 → -𝑒𝑧 = -𝑒(𝐹𝑦)))
9089reximdv 3168 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ* → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9179, 90syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9291adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9378, 92mpd 15 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦))
94 xnegex 13247 . . . . . . . . . . . . . . . 16 -𝑒𝑧 ∈ V
95 elmptima 45203 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ V → (-𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ↔ ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9694, 95ax-mp 5 . . . . . . . . . . . . . . 15 (-𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ↔ ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦))
9793, 96sylibr 234 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
9872sselda 3995 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ ℝ*)
9998xnegcld 13339 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ ℝ*)
10097, 99elind 4210 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*))
10172, 100ssrabdv 4084 . . . . . . . . . . . 12 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)})
10271, 101eqssd 4013 . . . . . . . . . . 11 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
103102infeq1d 9515 . . . . . . . . . 10 (𝜑 → inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
104103xnegeqd 45387 . . . . . . . . 9 (𝜑 → -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ) = -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
10514, 104eqtr2d 2776 . . . . . . . 8 (𝜑 → -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
106105mpteq2dv 5250 . . . . . . 7 (𝜑 → (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
107106rneqd 5952 . . . . . 6 (𝜑 → ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
108107infeq1d 9515 . . . . 5 (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
109108xnegeqd 45387 . . . 4 (𝜑 → -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
1108, 109eqtrd 2775 . . 3 (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
111 liminfvalxr.2 . . . . 5 (𝜑𝐴𝑉)
11240, 111fexd 7247 . . . 4 (𝜑𝐹 ∈ V)
113 eqid 2735 . . . . 5 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
114113liminfval 45715 . . . 4 (𝐹 ∈ V → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
115112, 114syl 17 . . 3 (𝜑 → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
116111mptexd 7244 . . . . 5 (𝜑 → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) ∈ V)
117 eqid 2735 . . . . . 6 (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
118117limsupval 15507 . . . . 5 ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) ∈ V → (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
119116, 118syl 17 . . . 4 (𝜑 → (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
120119xnegeqd 45387 . . 3 (𝜑 → -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
121110, 115, 1203eqtr4d 2785 . 2 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))))
122 liminfvalxr.1 . . . . . . . 8 𝑥𝐹
123 nfcv 2903 . . . . . . . 8 𝑥𝑦
124122, 123nffv 6917 . . . . . . 7 𝑥(𝐹𝑦)
125124nfxneg 45411 . . . . . 6 𝑥-𝑒(𝐹𝑦)
126 nfcv 2903 . . . . . 6 𝑦-𝑒(𝐹𝑥)
127 fveq2 6907 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
128127xnegeqd 45387 . . . . . 6 (𝑦 = 𝑥 → -𝑒(𝐹𝑦) = -𝑒(𝐹𝑥))
129125, 126, 128cbvmpt 5259 . . . . 5 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) = (𝑥𝐴 ↦ -𝑒(𝐹𝑥))
130129fveq2i 6910 . . . 4 (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = (lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥)))
131130xnegeqi 45390 . . 3 -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥)))
132131a1i 11 . 2 (𝜑 → -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
133121, 132eqtrd 2775 1 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wtru 1538  wcel 2106  wnfc 2888  wrex 3068  {crab 3433  Vcvv 3478  cin 3962  wss 3963  cmpt 5231  dom cdm 5689  ran crn 5690  cima 5692  Fun wfun 6557   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  supcsup 9478  infcinf 9479  cr 11152  +∞cpnf 11290  *cxr 11292   < clt 11293  -𝑒cxne 13149  [,)cico 13386  lim supclsp 15503  lim infclsi 45707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-xneg 13152  df-limsup 15504  df-liminf 45708
This theorem is referenced by:  liminfvalxrmpt  45742
  Copyright terms: Public domain W3C validator