Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfvalxr Structured version   Visualization version   GIF version

Theorem liminfvalxr 45812
Description: Alternate definition of lim inf when 𝐹 is an extended real-valued function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
liminfvalxr.1 𝑥𝐹
liminfvalxr.2 (𝜑𝐴𝑉)
liminfvalxr.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
liminfvalxr (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem liminfvalxr
Dummy variables 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nftru 1804 . . . . . . 7 𝑘
2 inss2 4213 . . . . . . . . 9 ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
3 infxrcl 13350 . . . . . . . . 9 (((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ* → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
42, 3ax-mp 5 . . . . . . . 8 inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*
54a1i 11 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℝ) → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ ℝ*)
61, 5supminfxrrnmpt 45498 . . . . . 6 (⊤ → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
76mptru 1547 . . . . 5 sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < )
87a1i 11 . . . 4 (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
9 tru 1544 . . . . . . . . . . 11
10 inss2 4213 . . . . . . . . . . . . 13 (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*
1110a1i 11 . . . . . . . . . . . 12 (⊤ → (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
1211supminfxr2 45496 . . . . . . . . . . 11 (⊤ → sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ))
139, 12ax-mp 5 . . . . . . . . . 10 sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < )
1413a1i 11 . . . . . . . . 9 (𝜑 → sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ))
15 elinel1 4176 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
16 nfmpt1 5220 . . . . . . . . . . . . . . . . . 18 𝑦(𝑦𝐴 ↦ -𝑒(𝐹𝑦))
17 xnegex 13224 . . . . . . . . . . . . . . . . . . . . 21 -𝑒(𝐹𝑦) ∈ V
18 eqid 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) = (𝑦𝐴 ↦ -𝑒(𝐹𝑦))
1917, 18fnmpti 6681 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴
2019a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴)
2120adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) Fn 𝐴)
22 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
2316, 21, 22fvelimad 6946 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
24233adant2 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
2515, 24syl3an3 1165 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
26 elinel2 4177 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*) → -𝑒𝑧 ∈ ℝ*)
27 elinel1 4176 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑦𝐴)
2817a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → -𝑒(𝐹𝑦) ∈ V)
2918fvmpt2 6997 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐴 ∧ -𝑒(𝐹𝑦) ∈ V) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒(𝐹𝑦))
3027, 28, 29syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒(𝐹𝑦))
3130eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → -𝑒(𝐹𝑦) = ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦))
3231adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦))
33 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧)
3432, 33eqtrd 2770 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = -𝑒𝑧)
3534adantll 714 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → -𝑒(𝐹𝑦) = -𝑒𝑧)
36 eqcom 2742 . . . . . . . . . . . . . . . . . . . . . . 23 (-𝑒(𝐹𝑦) = -𝑒𝑧 ↔ -𝑒𝑧 = -𝑒(𝐹𝑦))
3736biimpi 216 . . . . . . . . . . . . . . . . . . . . . 22 (-𝑒(𝐹𝑦) = -𝑒𝑧 → -𝑒𝑧 = -𝑒(𝐹𝑦))
3837adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
39 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑧 ∈ ℝ*)
40 liminfvalxr.3 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:𝐴⟶ℝ*)
4140adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝐹:𝐴⟶ℝ*)
4227adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦𝐴)
4341, 42ffvelcdmd 7075 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ ℝ*)
4443adantlr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ ℝ*)
45 xneg11 13231 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) ∈ ℝ*) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4639, 44, 45syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4746adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
4838, 47mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → 𝑧 = (𝐹𝑦))
4940ffund 6710 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → Fun 𝐹)
5049, 27anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (Fun 𝐹𝑦𝐴))
5150simpld 494 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → Fun 𝐹)
5240fdmd 6716 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → dom 𝐹 = 𝐴)
5352eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐴 = dom 𝐹)
5453adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝐴 = dom 𝐹)
5542, 54eleqtrd 2836 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦 ∈ dom 𝐹)
5651, 55jca 511 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (Fun 𝐹𝑦 ∈ dom 𝐹))
57 elinel2 4177 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞)) → 𝑦 ∈ (𝑘[,)+∞))
5857adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → 𝑦 ∈ (𝑘[,)+∞))
59 funfvima 7222 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝑦 ∈ (𝑘[,)+∞) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞))))
6056, 58, 59sylc 65 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞)))
6160ad4ant13 751 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → (𝐹𝑦) ∈ (𝐹 “ (𝑘[,)+∞)))
6248, 61eqeltrd 2834 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ -𝑒(𝐹𝑦) = -𝑒𝑧) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6335, 62syldan 591 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))) ∧ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6463rexlimdva2 3143 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
65643adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
6626, 65syl3an3 1165 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))((𝑦𝐴 ↦ -𝑒(𝐹𝑦))‘𝑦) = -𝑒𝑧𝑧 ∈ (𝐹 “ (𝑘[,)+∞))))
6725, 66mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ℝ* ∧ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
6867rabssdv 4050 . . . . . . . . . . . . 13 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ (𝐹 “ (𝑘[,)+∞)))
69 ssrab2 4055 . . . . . . . . . . . . . 14 {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ℝ*
7069a1i 11 . . . . . . . . . . . . 13 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ℝ*)
7168, 70ssind 4216 . . . . . . . . . . . 12 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} ⊆ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
722a1i 11 . . . . . . . . . . . . 13 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ ℝ*)
7340ffnd 6707 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 Fn 𝐴)
7473adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝐹 Fn 𝐴)
75 elinel1 4176 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
7675adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ (𝐹 “ (𝑘[,)+∞)))
77 fvelima2 6931 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴𝑧 ∈ (𝐹 “ (𝑘[,)+∞))) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧)
7874, 76, 77syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧)
79 elinel2 4177 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → 𝑧 ∈ ℝ*)
80 eqcom 2742 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑦) = 𝑧𝑧 = (𝐹𝑦))
8180biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑦) = 𝑧𝑧 = (𝐹𝑦))
8281adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 = (𝐹𝑦))
8382xnegeqd 45464 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
84 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 ∈ ℝ*)
8582, 84eqeltrrd 2835 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → (𝐹𝑦) ∈ ℝ*)
8684, 85, 45syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → (-𝑒𝑧 = -𝑒(𝐹𝑦) ↔ 𝑧 = (𝐹𝑦)))
8783, 86mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → 𝑧 = (𝐹𝑦))
8887xnegeqd 45464 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℝ* ∧ (𝐹𝑦) = 𝑧) → -𝑒𝑧 = -𝑒(𝐹𝑦))
8988ex 412 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ* → ((𝐹𝑦) = 𝑧 → -𝑒𝑧 = -𝑒(𝐹𝑦)))
9089reximdv 3155 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ℝ* → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9179, 90syl 17 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9291adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → (∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))(𝐹𝑦) = 𝑧 → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9378, 92mpd 15 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦))
94 xnegex 13224 . . . . . . . . . . . . . . . 16 -𝑒𝑧 ∈ V
95 elmptima 45282 . . . . . . . . . . . . . . . 16 (-𝑒𝑧 ∈ V → (-𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ↔ ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦)))
9694, 95ax-mp 5 . . . . . . . . . . . . . . 15 (-𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ↔ ∃𝑦 ∈ (𝐴 ∩ (𝑘[,)+∞))-𝑒𝑧 = -𝑒(𝐹𝑦))
9793, 96sylibr 234 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)))
9872sselda 3958 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → 𝑧 ∈ ℝ*)
9998xnegcld 13316 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ ℝ*)
10097, 99elind 4175 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*)) → -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*))
10172, 100ssrabdv 4049 . . . . . . . . . . . 12 (𝜑 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) ⊆ {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)})
10271, 101eqssd 3976 . . . . . . . . . . 11 (𝜑 → {𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)} = ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*))
103102infeq1d 9490 . . . . . . . . . 10 (𝜑 → inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ) = inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
104103xnegeqd 45464 . . . . . . . . 9 (𝜑 → -𝑒inf({𝑧 ∈ ℝ* ∣ -𝑒𝑧 ∈ (((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*)}, ℝ*, < ) = -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
10514, 104eqtr2d 2771 . . . . . . . 8 (𝜑 → -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
106105mpteq2dv 5215 . . . . . . 7 (𝜑 → (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
107106rneqd 5918 . . . . . 6 (𝜑 → ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )))
108107infeq1d 9490 . . . . 5 (𝜑 → inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
109108xnegeqd 45464 . . . 4 (𝜑 → -𝑒inf(ran (𝑘 ∈ ℝ ↦ -𝑒inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
1108, 109eqtrd 2770 . . 3 (𝜑 → sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
111 liminfvalxr.2 . . . . 5 (𝜑𝐴𝑉)
11240, 111fexd 7219 . . . 4 (𝜑𝐹 ∈ V)
113 eqid 2735 . . . . 5 (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
114113liminfval 45788 . . . 4 (𝐹 ∈ V → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
115112, 114syl 17 . . 3 (𝜑 → (lim inf‘𝐹) = sup(ran (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
116111mptexd 7216 . . . . 5 (𝜑 → (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) ∈ V)
117 eqid 2735 . . . . . 6 (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ))
118117limsupval 15490 . . . . 5 ((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) ∈ V → (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
119116, 118syl 17 . . . 4 (𝜑 → (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
120119xnegeqd 45464 . . 3 (𝜑 → -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒inf(ran (𝑘 ∈ ℝ ↦ sup((((𝑦𝐴 ↦ -𝑒(𝐹𝑦)) “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
121110, 115, 1203eqtr4d 2780 . 2 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))))
122 liminfvalxr.1 . . . . . . . 8 𝑥𝐹
123 nfcv 2898 . . . . . . . 8 𝑥𝑦
124122, 123nffv 6886 . . . . . . 7 𝑥(𝐹𝑦)
125124nfxneg 45488 . . . . . 6 𝑥-𝑒(𝐹𝑦)
126 nfcv 2898 . . . . . 6 𝑦-𝑒(𝐹𝑥)
127 fveq2 6876 . . . . . . 7 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
128127xnegeqd 45464 . . . . . 6 (𝑦 = 𝑥 → -𝑒(𝐹𝑦) = -𝑒(𝐹𝑥))
129125, 126, 128cbvmpt 5223 . . . . 5 (𝑦𝐴 ↦ -𝑒(𝐹𝑦)) = (𝑥𝐴 ↦ -𝑒(𝐹𝑥))
130129fveq2i 6879 . . . 4 (lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = (lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥)))
131130xnegeqi 45467 . . 3 -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥)))
132131a1i 11 . 2 (𝜑 → -𝑒(lim sup‘(𝑦𝐴 ↦ -𝑒(𝐹𝑦))) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
133121, 132eqtrd 2770 1 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑥𝐴 ↦ -𝑒(𝐹𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2108  wnfc 2883  wrex 3060  {crab 3415  Vcvv 3459  cin 3925  wss 3926  cmpt 5201  dom cdm 5654  ran crn 5655  cima 5657  Fun wfun 6525   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  supcsup 9452  infcinf 9453  cr 11128  +∞cpnf 11266  *cxr 11268   < clt 11269  -𝑒cxne 13125  [,)cico 13364  lim supclsp 15486  lim infclsi 45780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-xneg 13128  df-limsup 15487  df-liminf 45781
This theorem is referenced by:  liminfvalxrmpt  45815
  Copyright terms: Public domain W3C validator