Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfpnfuz Structured version   Visualization version   GIF version

Theorem liminfpnfuz 45854
Description: The inferior limit of a function is +∞ if and only if every real number is the lower bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminfpnfuz.1 𝑗𝐹
liminfpnfuz.2 (𝜑𝑀 ∈ ℤ)
liminfpnfuz.3 𝑍 = (ℤ𝑀)
liminfpnfuz.4 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
liminfpnfuz (𝜑 → ((lim inf‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem liminfpnfuz
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑙𝜑
2 nfcv 2894 . . . . 5 𝑙𝐹
3 liminfpnfuz.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
4 liminfpnfuz.3 . . . . 5 𝑍 = (ℤ𝑀)
5 liminfpnfuz.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
61, 2, 3, 4, 5liminfvaluz3 45834 . . . 4 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))))
7 liminfpnfuz.1 . . . . . . . . 9 𝑗𝐹
8 nfcv 2894 . . . . . . . . 9 𝑗𝑙
97, 8nffv 6827 . . . . . . . 8 𝑗(𝐹𝑙)
109nfxneg 45499 . . . . . . 7 𝑗-𝑒(𝐹𝑙)
11 nfcv 2894 . . . . . . 7 𝑙-𝑒(𝐹𝑗)
12 fveq2 6817 . . . . . . . 8 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
1312xnegeqd 45475 . . . . . . 7 (𝑙 = 𝑗 → -𝑒(𝐹𝑙) = -𝑒(𝐹𝑗))
1410, 11, 13cbvmpt 5188 . . . . . 6 (𝑙𝑍 ↦ -𝑒(𝐹𝑙)) = (𝑗𝑍 ↦ -𝑒(𝐹𝑗))
1514fveq2i 6820 . . . . 5 (lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))) = (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
1615xnegeqi 45478 . . . 4 -𝑒(lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
176, 16eqtrdi 2782 . . 3 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))))
1817eqeq1d 2733 . 2 (𝜑 → ((lim inf‘𝐹) = +∞ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞))
19 xnegmnf 13104 . . . . . 6 -𝑒-∞ = +∞
2019eqcomi 2740 . . . . 5 +∞ = -𝑒-∞
2120a1i 11 . . . 4 (𝜑 → +∞ = -𝑒-∞)
2221eqeq2d 2742 . . 3 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞))
234fvexi 6831 . . . . . . 7 𝑍 ∈ V
2423mptex 7152 . . . . . 6 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V
2524a1i 11 . . . . 5 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V)
2625limsupcld 45728 . . . 4 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ*)
27 mnfxr 11164 . . . 4 -∞ ∈ ℝ*
28 xneg11 13109 . . . 4 (((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
2926, 27, 28sylancl 586 . . 3 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
3022, 29bitrd 279 . 2 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
314uztrn2 12746 . . . . . . . . 9 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
32 xnegex 13102 . . . . . . . . 9 -𝑒(𝐹𝑗) ∈ V
33 fvmpt4 45275 . . . . . . . . 9 ((𝑗𝑍 ∧ -𝑒(𝐹𝑗) ∈ V) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3431, 32, 33sylancl 586 . . . . . . . 8 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3534breq1d 5096 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
3635ralbidva 3153 . . . . . 6 (𝑘𝑍 → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
3736rexbiia 3077 . . . . 5 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
3837ralbii 3078 . . . 4 (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
3938a1i 11 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
40 nfmpt1 5185 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
415ffvelcdmda 7012 . . . . . 6 ((𝜑𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
4241xnegcld 13194 . . . . 5 ((𝜑𝑙𝑍) → -𝑒(𝐹𝑙) ∈ ℝ*)
4314eqcomi 2740 . . . . 5 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑙𝑍 ↦ -𝑒(𝐹𝑙))
4442, 43fmptd 7042 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
4540, 3, 4, 44limsupmnfuz 45765 . . 3 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥))
467, 4, 5xlimpnfxnegmnf 45852 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
4739, 45, 463bitr4d 311 . 2 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
4818, 30, 473bitrd 305 1 (𝜑 → ((lim inf‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wnfc 2879  wral 3047  wrex 3056  Vcvv 3436   class class class wbr 5086  cmpt 5167  wf 6472  cfv 6476  cr 11000  +∞cpnf 11138  -∞cmnf 11139  *cxr 11140  cle 11142  cz 12463  cuz 12727  -𝑒cxne 13003  lim supclsp 15372  lim infclsi 45789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-xneg 13006  df-ico 13246  df-fl 13691  df-ceil 13692  df-limsup 15373  df-liminf 45790
This theorem is referenced by:  xlimpnfliminf  45898  xlimpnfliminf2  45899
  Copyright terms: Public domain W3C validator