Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfpnfuz Structured version   Visualization version   GIF version

Theorem liminfpnfuz 45787
Description: The inferior limit of a function is +∞ if and only if every real number is the lower bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminfpnfuz.1 𝑗𝐹
liminfpnfuz.2 (𝜑𝑀 ∈ ℤ)
liminfpnfuz.3 𝑍 = (ℤ𝑀)
liminfpnfuz.4 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
liminfpnfuz (𝜑 → ((lim inf‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem liminfpnfuz
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝑙𝜑
2 nfcv 2891 . . . . 5 𝑙𝐹
3 liminfpnfuz.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
4 liminfpnfuz.3 . . . . 5 𝑍 = (ℤ𝑀)
5 liminfpnfuz.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
61, 2, 3, 4, 5liminfvaluz3 45767 . . . 4 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))))
7 liminfpnfuz.1 . . . . . . . . 9 𝑗𝐹
8 nfcv 2891 . . . . . . . . 9 𝑗𝑙
97, 8nffv 6850 . . . . . . . 8 𝑗(𝐹𝑙)
109nfxneg 45430 . . . . . . 7 𝑗-𝑒(𝐹𝑙)
11 nfcv 2891 . . . . . . 7 𝑙-𝑒(𝐹𝑗)
12 fveq2 6840 . . . . . . . 8 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
1312xnegeqd 45406 . . . . . . 7 (𝑙 = 𝑗 → -𝑒(𝐹𝑙) = -𝑒(𝐹𝑗))
1410, 11, 13cbvmpt 5204 . . . . . 6 (𝑙𝑍 ↦ -𝑒(𝐹𝑙)) = (𝑗𝑍 ↦ -𝑒(𝐹𝑗))
1514fveq2i 6843 . . . . 5 (lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))) = (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
1615xnegeqi 45409 . . . 4 -𝑒(lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
176, 16eqtrdi 2780 . . 3 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))))
1817eqeq1d 2731 . 2 (𝜑 → ((lim inf‘𝐹) = +∞ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞))
19 xnegmnf 13146 . . . . . 6 -𝑒-∞ = +∞
2019eqcomi 2738 . . . . 5 +∞ = -𝑒-∞
2120a1i 11 . . . 4 (𝜑 → +∞ = -𝑒-∞)
2221eqeq2d 2740 . . 3 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞))
234fvexi 6854 . . . . . . 7 𝑍 ∈ V
2423mptex 7179 . . . . . 6 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V
2524a1i 11 . . . . 5 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V)
2625limsupcld 45661 . . . 4 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ*)
27 mnfxr 11207 . . . 4 -∞ ∈ ℝ*
28 xneg11 13151 . . . 4 (((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
2926, 27, 28sylancl 586 . . 3 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
3022, 29bitrd 279 . 2 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
314uztrn2 12788 . . . . . . . . 9 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
32 xnegex 13144 . . . . . . . . 9 -𝑒(𝐹𝑗) ∈ V
33 fvmpt4 45205 . . . . . . . . 9 ((𝑗𝑍 ∧ -𝑒(𝐹𝑗) ∈ V) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3431, 32, 33sylancl 586 . . . . . . . 8 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3534breq1d 5112 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
3635ralbidva 3154 . . . . . 6 (𝑘𝑍 → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
3736rexbiia 3074 . . . . 5 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
3837ralbii 3075 . . . 4 (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
3938a1i 11 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
40 nfmpt1 5201 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
415ffvelcdmda 7038 . . . . . 6 ((𝜑𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
4241xnegcld 13236 . . . . 5 ((𝜑𝑙𝑍) → -𝑒(𝐹𝑙) ∈ ℝ*)
4314eqcomi 2738 . . . . 5 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑙𝑍 ↦ -𝑒(𝐹𝑙))
4442, 43fmptd 7068 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
4540, 3, 4, 44limsupmnfuz 45698 . . 3 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥))
467, 4, 5xlimpnfxnegmnf 45785 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
4739, 45, 463bitr4d 311 . 2 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
4818, 30, 473bitrd 305 1 (𝜑 → ((lim inf‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wrex 3053  Vcvv 3444   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  cr 11043  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183  cle 11185  cz 12505  cuz 12769  -𝑒cxne 13045  lim supclsp 15412  lim infclsi 45722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-xneg 13048  df-ico 13288  df-fl 13730  df-ceil 13731  df-limsup 15413  df-liminf 45723
This theorem is referenced by:  xlimpnfliminf  45831  xlimpnfliminf2  45832
  Copyright terms: Public domain W3C validator