Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfpnfuz Structured version   Visualization version   GIF version

Theorem liminfpnfuz 45814
Description: The inferior limit of a function is +∞ if and only if every real number is the lower bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminfpnfuz.1 𝑗𝐹
liminfpnfuz.2 (𝜑𝑀 ∈ ℤ)
liminfpnfuz.3 𝑍 = (ℤ𝑀)
liminfpnfuz.4 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
liminfpnfuz (𝜑 → ((lim inf‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem liminfpnfuz
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝑙𝜑
2 nfcv 2891 . . . . 5 𝑙𝐹
3 liminfpnfuz.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
4 liminfpnfuz.3 . . . . 5 𝑍 = (ℤ𝑀)
5 liminfpnfuz.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
61, 2, 3, 4, 5liminfvaluz3 45794 . . . 4 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))))
7 liminfpnfuz.1 . . . . . . . . 9 𝑗𝐹
8 nfcv 2891 . . . . . . . . 9 𝑗𝑙
97, 8nffv 6868 . . . . . . . 8 𝑗(𝐹𝑙)
109nfxneg 45457 . . . . . . 7 𝑗-𝑒(𝐹𝑙)
11 nfcv 2891 . . . . . . 7 𝑙-𝑒(𝐹𝑗)
12 fveq2 6858 . . . . . . . 8 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
1312xnegeqd 45433 . . . . . . 7 (𝑙 = 𝑗 → -𝑒(𝐹𝑙) = -𝑒(𝐹𝑗))
1410, 11, 13cbvmpt 5209 . . . . . 6 (𝑙𝑍 ↦ -𝑒(𝐹𝑙)) = (𝑗𝑍 ↦ -𝑒(𝐹𝑗))
1514fveq2i 6861 . . . . 5 (lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))) = (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
1615xnegeqi 45436 . . . 4 -𝑒(lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
176, 16eqtrdi 2780 . . 3 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))))
1817eqeq1d 2731 . 2 (𝜑 → ((lim inf‘𝐹) = +∞ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞))
19 xnegmnf 13170 . . . . . 6 -𝑒-∞ = +∞
2019eqcomi 2738 . . . . 5 +∞ = -𝑒-∞
2120a1i 11 . . . 4 (𝜑 → +∞ = -𝑒-∞)
2221eqeq2d 2740 . . 3 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞))
234fvexi 6872 . . . . . . 7 𝑍 ∈ V
2423mptex 7197 . . . . . 6 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V
2524a1i 11 . . . . 5 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V)
2625limsupcld 45688 . . . 4 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ*)
27 mnfxr 11231 . . . 4 -∞ ∈ ℝ*
28 xneg11 13175 . . . 4 (((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
2926, 27, 28sylancl 586 . . 3 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
3022, 29bitrd 279 . 2 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
314uztrn2 12812 . . . . . . . . 9 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
32 xnegex 13168 . . . . . . . . 9 -𝑒(𝐹𝑗) ∈ V
33 fvmpt4 45232 . . . . . . . . 9 ((𝑗𝑍 ∧ -𝑒(𝐹𝑗) ∈ V) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3431, 32, 33sylancl 586 . . . . . . . 8 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3534breq1d 5117 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
3635ralbidva 3154 . . . . . 6 (𝑘𝑍 → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
3736rexbiia 3074 . . . . 5 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
3837ralbii 3075 . . . 4 (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
3938a1i 11 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
40 nfmpt1 5206 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
415ffvelcdmda 7056 . . . . . 6 ((𝜑𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
4241xnegcld 13260 . . . . 5 ((𝜑𝑙𝑍) → -𝑒(𝐹𝑙) ∈ ℝ*)
4314eqcomi 2738 . . . . 5 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑙𝑍 ↦ -𝑒(𝐹𝑙))
4442, 43fmptd 7086 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
4540, 3, 4, 44limsupmnfuz 45725 . . 3 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥))
467, 4, 5xlimpnfxnegmnf 45812 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
4739, 45, 463bitr4d 311 . 2 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
4818, 30, 473bitrd 305 1 (𝜑 → ((lim inf‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wrex 3053  Vcvv 3447   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  cr 11067  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207  cle 11209  cz 12529  cuz 12793  -𝑒cxne 13069  lim supclsp 15436  lim infclsi 45749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-xneg 13072  df-ico 13312  df-fl 13754  df-ceil 13755  df-limsup 15437  df-liminf 45750
This theorem is referenced by:  xlimpnfliminf  45858  xlimpnfliminf2  45859
  Copyright terms: Public domain W3C validator