Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminfpnfuz Structured version   Visualization version   GIF version

Theorem liminfpnfuz 45737
Description: The inferior limit of a function is +∞ if and only if every real number is the lower bound of the restriction of the function to a set of upper integers. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
liminfpnfuz.1 𝑗𝐹
liminfpnfuz.2 (𝜑𝑀 ∈ ℤ)
liminfpnfuz.3 𝑍 = (ℤ𝑀)
liminfpnfuz.4 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
liminfpnfuz (𝜑 → ((lim inf‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐹(𝑗)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem liminfpnfuz
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . . . 5 𝑙𝜑
2 nfcv 2908 . . . . 5 𝑙𝐹
3 liminfpnfuz.2 . . . . 5 (𝜑𝑀 ∈ ℤ)
4 liminfpnfuz.3 . . . . 5 𝑍 = (ℤ𝑀)
5 liminfpnfuz.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
61, 2, 3, 4, 5liminfvaluz3 45717 . . . 4 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))))
7 liminfpnfuz.1 . . . . . . . . 9 𝑗𝐹
8 nfcv 2908 . . . . . . . . 9 𝑗𝑙
97, 8nffv 6930 . . . . . . . 8 𝑗(𝐹𝑙)
109nfxneg 45376 . . . . . . 7 𝑗-𝑒(𝐹𝑙)
11 nfcv 2908 . . . . . . 7 𝑙-𝑒(𝐹𝑗)
12 fveq2 6920 . . . . . . . 8 (𝑙 = 𝑗 → (𝐹𝑙) = (𝐹𝑗))
1312xnegeqd 45352 . . . . . . 7 (𝑙 = 𝑗 → -𝑒(𝐹𝑙) = -𝑒(𝐹𝑗))
1410, 11, 13cbvmpt 5277 . . . . . 6 (𝑙𝑍 ↦ -𝑒(𝐹𝑙)) = (𝑗𝑍 ↦ -𝑒(𝐹𝑗))
1514fveq2i 6923 . . . . 5 (lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))) = (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
1615xnegeqi 45355 . . . 4 -𝑒(lim sup‘(𝑙𝑍 ↦ -𝑒(𝐹𝑙))) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗)))
176, 16eqtrdi 2796 . . 3 (𝜑 → (lim inf‘𝐹) = -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))))
1817eqeq1d 2742 . 2 (𝜑 → ((lim inf‘𝐹) = +∞ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞))
19 xnegmnf 13272 . . . . . 6 -𝑒-∞ = +∞
2019eqcomi 2749 . . . . 5 +∞ = -𝑒-∞
2120a1i 11 . . . 4 (𝜑 → +∞ = -𝑒-∞)
2221eqeq2d 2751 . . 3 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞ ↔ -𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞))
234fvexi 6934 . . . . . . 7 𝑍 ∈ V
2423mptex 7260 . . . . . 6 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V
2524a1i 11 . . . . 5 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) ∈ V)
2625limsupcld 45611 . . . 4 (𝜑 → (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ*)
27 mnfxr 11347 . . . 4 -∞ ∈ ℝ*
28 xneg11 13277 . . . 4 (((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) ∈ ℝ* ∧ -∞ ∈ ℝ*) → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
2926, 27, 28sylancl 585 . . 3 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -𝑒-∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
3022, 29bitrd 279 . 2 (𝜑 → (-𝑒(lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = +∞ ↔ (lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞))
314uztrn2 12922 . . . . . . . . 9 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → 𝑗𝑍)
32 xnegex 13270 . . . . . . . . 9 -𝑒(𝐹𝑗) ∈ V
33 fvmpt4 45146 . . . . . . . . 9 ((𝑗𝑍 ∧ -𝑒(𝐹𝑗) ∈ V) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3431, 32, 33sylancl 585 . . . . . . . 8 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → ((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) = -𝑒(𝐹𝑗))
3534breq1d 5176 . . . . . . 7 ((𝑘𝑍𝑗 ∈ (ℤ𝑘)) → (((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹𝑗) ≤ 𝑥))
3635ralbidva 3182 . . . . . 6 (𝑘𝑍 → (∀𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
3736rexbiia 3098 . . . . 5 (∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
3837ralbii 3099 . . . 4 (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥)
3938a1i 11 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
40 nfmpt1 5274 . . . 4 𝑗(𝑗𝑍 ↦ -𝑒(𝐹𝑗))
415ffvelcdmda 7118 . . . . . 6 ((𝜑𝑙𝑍) → (𝐹𝑙) ∈ ℝ*)
4241xnegcld 13362 . . . . 5 ((𝜑𝑙𝑍) → -𝑒(𝐹𝑙) ∈ ℝ*)
4314eqcomi 2749 . . . . 5 (𝑗𝑍 ↦ -𝑒(𝐹𝑗)) = (𝑙𝑍 ↦ -𝑒(𝐹𝑙))
4442, 43fmptd 7148 . . . 4 (𝜑 → (𝑗𝑍 ↦ -𝑒(𝐹𝑗)):𝑍⟶ℝ*)
4540, 3, 4, 44limsupmnfuz 45648 . . 3 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)((𝑗𝑍 ↦ -𝑒(𝐹𝑗))‘𝑗) ≤ 𝑥))
467, 4, 5xlimpnfxnegmnf 45735 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)-𝑒(𝐹𝑗) ≤ 𝑥))
4739, 45, 463bitr4d 311 . 2 (𝜑 → ((lim sup‘(𝑗𝑍 ↦ -𝑒(𝐹𝑗))) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
4818, 30, 473bitrd 305 1 (𝜑 → ((lim inf‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘𝑍𝑗 ∈ (ℤ𝑘)𝑥 ≤ (𝐹𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wnfc 2893  wral 3067  wrex 3076  Vcvv 3488   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  cr 11183  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323  cle 11325  cz 12639  cuz 12903  -𝑒cxne 13172  lim supclsp 15516  lim infclsi 45672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-xneg 13175  df-ico 13413  df-fl 13843  df-ceil 13844  df-limsup 15517  df-liminf 45673
This theorem is referenced by:  xlimpnfliminf  45781  xlimpnfliminf2  45782
  Copyright terms: Public domain W3C validator