Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑙𝜑 |
2 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑙𝐹 |
3 | | liminfpnfuz.2 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | | liminfpnfuz.3 |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
5 | | liminfpnfuz.4 |
. . . . 5
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
6 | 1, 2, 3, 4, 5 | liminfvaluz3 43227 |
. . . 4
⊢ (𝜑 → (lim inf‘𝐹) = -𝑒(lim
sup‘(𝑙 ∈ 𝑍 ↦
-𝑒(𝐹‘𝑙)))) |
7 | | liminfpnfuz.1 |
. . . . . . . . 9
⊢
Ⅎ𝑗𝐹 |
8 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑗𝑙 |
9 | 7, 8 | nffv 6766 |
. . . . . . . 8
⊢
Ⅎ𝑗(𝐹‘𝑙) |
10 | 9 | nfxneg 42891 |
. . . . . . 7
⊢
Ⅎ𝑗-𝑒(𝐹‘𝑙) |
11 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑙-𝑒(𝐹‘𝑗) |
12 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑙 = 𝑗 → (𝐹‘𝑙) = (𝐹‘𝑗)) |
13 | 12 | xnegeqd 42867 |
. . . . . . 7
⊢ (𝑙 = 𝑗 → -𝑒(𝐹‘𝑙) = -𝑒(𝐹‘𝑗)) |
14 | 10, 11, 13 | cbvmpt 5181 |
. . . . . 6
⊢ (𝑙 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑙)) = (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)) |
15 | 14 | fveq2i 6759 |
. . . . 5
⊢ (lim
sup‘(𝑙 ∈ 𝑍 ↦
-𝑒(𝐹‘𝑙))) = (lim sup‘(𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))) |
16 | 15 | xnegeqi 42870 |
. . . 4
⊢
-𝑒(lim sup‘(𝑙 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑙))) = -𝑒(lim
sup‘(𝑗 ∈ 𝑍 ↦
-𝑒(𝐹‘𝑗))) |
17 | 6, 16 | eqtrdi 2795 |
. . 3
⊢ (𝜑 → (lim inf‘𝐹) = -𝑒(lim
sup‘(𝑗 ∈ 𝑍 ↦
-𝑒(𝐹‘𝑗)))) |
18 | 17 | eqeq1d 2740 |
. 2
⊢ (𝜑 → ((lim inf‘𝐹) = +∞ ↔
-𝑒(lim sup‘(𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))) = +∞)) |
19 | | xnegmnf 12873 |
. . . . . 6
⊢
-𝑒-∞ = +∞ |
20 | 19 | eqcomi 2747 |
. . . . 5
⊢ +∞
= -𝑒-∞ |
21 | 20 | a1i 11 |
. . . 4
⊢ (𝜑 → +∞ =
-𝑒-∞) |
22 | 21 | eqeq2d 2749 |
. . 3
⊢ (𝜑 → (-𝑒(lim
sup‘(𝑗 ∈ 𝑍 ↦
-𝑒(𝐹‘𝑗))) = +∞ ↔
-𝑒(lim sup‘(𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))) =
-𝑒-∞)) |
23 | 4 | fvexi 6770 |
. . . . . . 7
⊢ 𝑍 ∈ V |
24 | 23 | mptex 7081 |
. . . . . 6
⊢ (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)) ∈ V |
25 | 24 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)) ∈ V) |
26 | 25 | limsupcld 43121 |
. . . 4
⊢ (𝜑 → (lim sup‘(𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))) ∈
ℝ*) |
27 | | mnfxr 10963 |
. . . 4
⊢ -∞
∈ ℝ* |
28 | | xneg11 12878 |
. . . 4
⊢ (((lim
sup‘(𝑗 ∈ 𝑍 ↦
-𝑒(𝐹‘𝑗))) ∈ ℝ* ∧ -∞
∈ ℝ*) → (-𝑒(lim sup‘(𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))) = -𝑒-∞ ↔
(lim sup‘(𝑗 ∈
𝑍 ↦
-𝑒(𝐹‘𝑗))) = -∞)) |
29 | 26, 27, 28 | sylancl 585 |
. . 3
⊢ (𝜑 → (-𝑒(lim
sup‘(𝑗 ∈ 𝑍 ↦
-𝑒(𝐹‘𝑗))) = -𝑒-∞ ↔
(lim sup‘(𝑗 ∈
𝑍 ↦
-𝑒(𝐹‘𝑗))) = -∞)) |
30 | 22, 29 | bitrd 278 |
. 2
⊢ (𝜑 → (-𝑒(lim
sup‘(𝑗 ∈ 𝑍 ↦
-𝑒(𝐹‘𝑗))) = +∞ ↔ (lim sup‘(𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))) = -∞)) |
31 | 4 | uztrn2 12530 |
. . . . . . . . 9
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → 𝑗 ∈ 𝑍) |
32 | | xnegex 12871 |
. . . . . . . . 9
⊢
-𝑒(𝐹‘𝑗) ∈ V |
33 | | fvmpt4 42671 |
. . . . . . . . 9
⊢ ((𝑗 ∈ 𝑍 ∧ -𝑒(𝐹‘𝑗) ∈ V) → ((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) = -𝑒(𝐹‘𝑗)) |
34 | 31, 32, 33 | sylancl 585 |
. . . . . . . 8
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → ((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) = -𝑒(𝐹‘𝑗)) |
35 | 34 | breq1d 5080 |
. . . . . . 7
⊢ ((𝑘 ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘𝑘)) → (((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ -𝑒(𝐹‘𝑗) ≤ 𝑥)) |
36 | 35 | ralbidva 3119 |
. . . . . 6
⊢ (𝑘 ∈ 𝑍 → (∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
37 | 36 | rexbiia 3176 |
. . . . 5
⊢
(∃𝑘 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥) |
38 | 37 | ralbii 3090 |
. . . 4
⊢
(∀𝑥 ∈
ℝ ∃𝑘 ∈
𝑍 ∀𝑗 ∈
(ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥) |
39 | 38 | a1i 11 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
40 | | nfmpt1 5178 |
. . . 4
⊢
Ⅎ𝑗(𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)) |
41 | 5 | ffvelrnda 6943 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑙 ∈ 𝑍) → (𝐹‘𝑙) ∈
ℝ*) |
42 | 41 | xnegcld 12963 |
. . . . 5
⊢ ((𝜑 ∧ 𝑙 ∈ 𝑍) → -𝑒(𝐹‘𝑙) ∈
ℝ*) |
43 | 14 | eqcomi 2747 |
. . . . 5
⊢ (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)) = (𝑙 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑙)) |
44 | 42, 43 | fmptd 6970 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗)):𝑍⟶ℝ*) |
45 | 40, 3, 4, 44 | limsupmnfuz 43158 |
. . 3
⊢ (𝜑 → ((lim sup‘(𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)((𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))‘𝑗) ≤ 𝑥)) |
46 | 7, 4, 5 | xlimpnfxnegmnf 43245 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗) ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)-𝑒(𝐹‘𝑗) ≤ 𝑥)) |
47 | 39, 45, 46 | 3bitr4d 310 |
. 2
⊢ (𝜑 → ((lim sup‘(𝑗 ∈ 𝑍 ↦ -𝑒(𝐹‘𝑗))) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗))) |
48 | 18, 30, 47 | 3bitrd 304 |
1
⊢ (𝜑 → ((lim inf‘𝐹) = +∞ ↔
∀𝑥 ∈ ℝ
∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)𝑥 ≤ (𝐹‘𝑗))) |