Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminf0 Structured version   Visualization version   GIF version

Theorem liminf0 41505
Description: The inferior limit of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
liminf0 (lim inf‘∅) = +∞

Proof of Theorem liminf0
StepHypRef Expression
1 nftru 1767 . . . 4 𝑥
2 0ex 5062 . . . . 5 ∅ ∈ V
32a1i 11 . . . 4 (⊤ → ∅ ∈ V)
4 0red 10437 . . . 4 (⊤ → 0 ∈ ℝ)
5 noel 4177 . . . . . . 7 ¬ 𝑥 ∈ ∅
6 elinel1 4054 . . . . . . . 8 (𝑥 ∈ (∅ ∩ (0[,)+∞)) → 𝑥 ∈ ∅)
76con3i 152 . . . . . . 7 𝑥 ∈ ∅ → ¬ 𝑥 ∈ (∅ ∩ (0[,)+∞)))
85, 7ax-mp 5 . . . . . 6 ¬ 𝑥 ∈ (∅ ∩ (0[,)+∞))
9 pm2.21 121 . . . . . 6 𝑥 ∈ (∅ ∩ (0[,)+∞)) → (𝑥 ∈ (∅ ∩ (0[,)+∞)) → (∅‘𝑥) ∈ ℝ*))
108, 9ax-mp 5 . . . . 5 (𝑥 ∈ (∅ ∩ (0[,)+∞)) → (∅‘𝑥) ∈ ℝ*)
1110adantl 474 . . . 4 ((⊤ ∧ 𝑥 ∈ (∅ ∩ (0[,)+∞))) → (∅‘𝑥) ∈ ℝ*)
121, 3, 4, 11liminfval3 41502 . . 3 (⊤ → (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))))
1312mptru 1514 . 2 (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥)))
14 mpt0 6314 . . 3 (𝑥 ∈ ∅ ↦ (∅‘𝑥)) = ∅
1514fveq2i 6496 . 2 (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = (lim inf‘∅)
16 mpt0 6314 . . . . . 6 (𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥)) = ∅
1716fveq2i 6496 . . . . 5 (lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = (lim sup‘∅)
18 limsup0 41406 . . . . 5 (lim sup‘∅) = -∞
1917, 18eqtri 2796 . . . 4 (lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = -∞
2019xnegeqi 41145 . . 3 -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = -𝑒-∞
21 xnegmnf 12414 . . 3 -𝑒-∞ = +∞
2220, 21eqtri 2796 . 2 -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = +∞
2313, 15, 223eqtr3i 2804 1 (lim inf‘∅) = +∞
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1507  wtru 1508  wcel 2050  Vcvv 3409  cin 3822  c0 4172  cmpt 5002  cfv 6182  (class class class)co 6970  0cc0 10329  +∞cpnf 10465  -∞cmnf 10466  *cxr 10467  -𝑒cxne 12315  [,)cico 12550  lim supclsp 14682  lim infclsi 41463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10385  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405  ax-pre-mulgt0 10406  ax-pre-sup 10407
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7495  df-2nd 7496  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-sup 8695  df-inf 8696  df-pnf 10470  df-mnf 10471  df-xr 10472  df-ltxr 10473  df-le 10474  df-sub 10666  df-neg 10667  df-div 11093  df-nn 11434  df-n0 11702  df-z 11788  df-uz 12053  df-q 12157  df-xneg 12318  df-ico 12554  df-limsup 14683  df-liminf 41464
This theorem is referenced by:  liminflelimsupcex  41509
  Copyright terms: Public domain W3C validator