Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminf0 Structured version   Visualization version   GIF version

Theorem liminf0 45916
Description: The inferior limit of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
liminf0 (lim inf‘∅) = +∞

Proof of Theorem liminf0
StepHypRef Expression
1 nftru 1805 . . . 4 𝑥
2 0ex 5247 . . . . 5 ∅ ∈ V
32a1i 11 . . . 4 (⊤ → ∅ ∈ V)
4 0red 11122 . . . 4 (⊤ → 0 ∈ ℝ)
5 noel 4287 . . . . . . 7 ¬ 𝑥 ∈ ∅
6 elinel1 4150 . . . . . . . 8 (𝑥 ∈ (∅ ∩ (0[,)+∞)) → 𝑥 ∈ ∅)
76con3i 154 . . . . . . 7 𝑥 ∈ ∅ → ¬ 𝑥 ∈ (∅ ∩ (0[,)+∞)))
85, 7ax-mp 5 . . . . . 6 ¬ 𝑥 ∈ (∅ ∩ (0[,)+∞))
9 pm2.21 123 . . . . . 6 𝑥 ∈ (∅ ∩ (0[,)+∞)) → (𝑥 ∈ (∅ ∩ (0[,)+∞)) → (∅‘𝑥) ∈ ℝ*))
108, 9ax-mp 5 . . . . 5 (𝑥 ∈ (∅ ∩ (0[,)+∞)) → (∅‘𝑥) ∈ ℝ*)
1110adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ (∅ ∩ (0[,)+∞))) → (∅‘𝑥) ∈ ℝ*)
121, 3, 4, 11liminfval3 45913 . . 3 (⊤ → (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))))
1312mptru 1548 . 2 (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥)))
14 mpt0 6628 . . 3 (𝑥 ∈ ∅ ↦ (∅‘𝑥)) = ∅
1514fveq2i 6831 . 2 (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = (lim inf‘∅)
16 mpt0 6628 . . . . . 6 (𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥)) = ∅
1716fveq2i 6831 . . . . 5 (lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = (lim sup‘∅)
18 limsup0 45817 . . . . 5 (lim sup‘∅) = -∞
1917, 18eqtri 2756 . . . 4 (lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = -∞
2019xnegeqi 45563 . . 3 -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = -𝑒-∞
21 xnegmnf 13111 . . 3 -𝑒-∞ = +∞
2220, 21eqtri 2756 . 2 -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = +∞
2313, 15, 223eqtr3i 2764 1 (lim inf‘∅) = +∞
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wtru 1542  wcel 2113  Vcvv 3437  cin 3897  c0 4282  cmpt 5174  cfv 6486  (class class class)co 7352  0cc0 11013  +∞cpnf 11150  -∞cmnf 11151  *cxr 11152  -𝑒cxne 13010  [,)cico 13249  lim supclsp 15379  lim infclsi 45874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-xneg 13013  df-ico 13253  df-limsup 15380  df-liminf 45875
This theorem is referenced by:  liminflelimsupcex  45920
  Copyright terms: Public domain W3C validator