| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminf0 | Structured version Visualization version GIF version | ||
| Description: The inferior limit of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminf0 | ⊢ (lim inf‘∅) = +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑥⊤ | |
| 2 | 0ex 5249 | . . . . 5 ⊢ ∅ ∈ V | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ∈ V) |
| 4 | 0red 11137 | . . . 4 ⊢ (⊤ → 0 ∈ ℝ) | |
| 5 | noel 4291 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
| 6 | elinel1 4154 | . . . . . . . 8 ⊢ (𝑥 ∈ (∅ ∩ (0[,)+∞)) → 𝑥 ∈ ∅) | |
| 7 | 6 | con3i 154 | . . . . . . 7 ⊢ (¬ 𝑥 ∈ ∅ → ¬ 𝑥 ∈ (∅ ∩ (0[,)+∞))) |
| 8 | 5, 7 | ax-mp 5 | . . . . . 6 ⊢ ¬ 𝑥 ∈ (∅ ∩ (0[,)+∞)) |
| 9 | pm2.21 123 | . . . . . 6 ⊢ (¬ 𝑥 ∈ (∅ ∩ (0[,)+∞)) → (𝑥 ∈ (∅ ∩ (0[,)+∞)) → (∅‘𝑥) ∈ ℝ*)) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (∅ ∩ (0[,)+∞)) → (∅‘𝑥) ∈ ℝ*) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (∅ ∩ (0[,)+∞))) → (∅‘𝑥) ∈ ℝ*) |
| 12 | 1, 3, 4, 11 | liminfval3 45772 | . . 3 ⊢ (⊤ → (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥)))) |
| 13 | 12 | mptru 1547 | . 2 ⊢ (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) |
| 14 | mpt0 6628 | . . 3 ⊢ (𝑥 ∈ ∅ ↦ (∅‘𝑥)) = ∅ | |
| 15 | 14 | fveq2i 6829 | . 2 ⊢ (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = (lim inf‘∅) |
| 16 | mpt0 6628 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥)) = ∅ | |
| 17 | 16 | fveq2i 6829 | . . . . 5 ⊢ (lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = (lim sup‘∅) |
| 18 | limsup0 45676 | . . . . 5 ⊢ (lim sup‘∅) = -∞ | |
| 19 | 17, 18 | eqtri 2752 | . . . 4 ⊢ (lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = -∞ |
| 20 | 19 | xnegeqi 45420 | . . 3 ⊢ -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = -𝑒-∞ |
| 21 | xnegmnf 13130 | . . 3 ⊢ -𝑒-∞ = +∞ | |
| 22 | 20, 21 | eqtri 2752 | . 2 ⊢ -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = +∞ |
| 23 | 13, 15, 22 | 3eqtr3i 2760 | 1 ⊢ (lim inf‘∅) = +∞ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 ∅c0 4286 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 0cc0 11028 +∞cpnf 11165 -∞cmnf 11166 ℝ*cxr 11167 -𝑒cxne 13029 [,)cico 13268 lim supclsp 15395 lim infclsi 45733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-xneg 13032 df-ico 13272 df-limsup 15396 df-liminf 45734 |
| This theorem is referenced by: liminflelimsupcex 45779 |
| Copyright terms: Public domain | W3C validator |