![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminf0 | Structured version Visualization version GIF version |
Description: The inferior limit of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminf0 | ⊢ (lim inf‘∅) = +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1807 | . . . 4 ⊢ Ⅎ𝑥⊤ | |
2 | 0ex 5308 | . . . . 5 ⊢ ∅ ∈ V | |
3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ∈ V) |
4 | 0red 11217 | . . . 4 ⊢ (⊤ → 0 ∈ ℝ) | |
5 | noel 4331 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
6 | elinel1 4196 | . . . . . . . 8 ⊢ (𝑥 ∈ (∅ ∩ (0[,)+∞)) → 𝑥 ∈ ∅) | |
7 | 6 | con3i 154 | . . . . . . 7 ⊢ (¬ 𝑥 ∈ ∅ → ¬ 𝑥 ∈ (∅ ∩ (0[,)+∞))) |
8 | 5, 7 | ax-mp 5 | . . . . . 6 ⊢ ¬ 𝑥 ∈ (∅ ∩ (0[,)+∞)) |
9 | pm2.21 123 | . . . . . 6 ⊢ (¬ 𝑥 ∈ (∅ ∩ (0[,)+∞)) → (𝑥 ∈ (∅ ∩ (0[,)+∞)) → (∅‘𝑥) ∈ ℝ*)) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (∅ ∩ (0[,)+∞)) → (∅‘𝑥) ∈ ℝ*) |
11 | 10 | adantl 483 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (∅ ∩ (0[,)+∞))) → (∅‘𝑥) ∈ ℝ*) |
12 | 1, 3, 4, 11 | liminfval3 44506 | . . 3 ⊢ (⊤ → (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥)))) |
13 | 12 | mptru 1549 | . 2 ⊢ (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) |
14 | mpt0 6693 | . . 3 ⊢ (𝑥 ∈ ∅ ↦ (∅‘𝑥)) = ∅ | |
15 | 14 | fveq2i 6895 | . 2 ⊢ (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = (lim inf‘∅) |
16 | mpt0 6693 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥)) = ∅ | |
17 | 16 | fveq2i 6895 | . . . . 5 ⊢ (lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = (lim sup‘∅) |
18 | limsup0 44410 | . . . . 5 ⊢ (lim sup‘∅) = -∞ | |
19 | 17, 18 | eqtri 2761 | . . . 4 ⊢ (lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = -∞ |
20 | 19 | xnegeqi 44150 | . . 3 ⊢ -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = -𝑒-∞ |
21 | xnegmnf 13189 | . . 3 ⊢ -𝑒-∞ = +∞ | |
22 | 20, 21 | eqtri 2761 | . 2 ⊢ -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = +∞ |
23 | 13, 15, 22 | 3eqtr3i 2769 | 1 ⊢ (lim inf‘∅) = +∞ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ⊤wtru 1543 ∈ wcel 2107 Vcvv 3475 ∩ cin 3948 ∅c0 4323 ↦ cmpt 5232 ‘cfv 6544 (class class class)co 7409 0cc0 11110 +∞cpnf 11245 -∞cmnf 11246 ℝ*cxr 11247 -𝑒cxne 13089 [,)cico 13326 lim supclsp 15414 lim infclsi 44467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-q 12933 df-xneg 13092 df-ico 13330 df-limsup 15415 df-liminf 44468 |
This theorem is referenced by: liminflelimsupcex 44513 |
Copyright terms: Public domain | W3C validator |