Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminf0 Structured version   Visualization version   GIF version

Theorem liminf0 43334
Description: The inferior limit of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
liminf0 (lim inf‘∅) = +∞

Proof of Theorem liminf0
StepHypRef Expression
1 nftru 1807 . . . 4 𝑥
2 0ex 5231 . . . . 5 ∅ ∈ V
32a1i 11 . . . 4 (⊤ → ∅ ∈ V)
4 0red 10978 . . . 4 (⊤ → 0 ∈ ℝ)
5 noel 4264 . . . . . . 7 ¬ 𝑥 ∈ ∅
6 elinel1 4129 . . . . . . . 8 (𝑥 ∈ (∅ ∩ (0[,)+∞)) → 𝑥 ∈ ∅)
76con3i 154 . . . . . . 7 𝑥 ∈ ∅ → ¬ 𝑥 ∈ (∅ ∩ (0[,)+∞)))
85, 7ax-mp 5 . . . . . 6 ¬ 𝑥 ∈ (∅ ∩ (0[,)+∞))
9 pm2.21 123 . . . . . 6 𝑥 ∈ (∅ ∩ (0[,)+∞)) → (𝑥 ∈ (∅ ∩ (0[,)+∞)) → (∅‘𝑥) ∈ ℝ*))
108, 9ax-mp 5 . . . . 5 (𝑥 ∈ (∅ ∩ (0[,)+∞)) → (∅‘𝑥) ∈ ℝ*)
1110adantl 482 . . . 4 ((⊤ ∧ 𝑥 ∈ (∅ ∩ (0[,)+∞))) → (∅‘𝑥) ∈ ℝ*)
121, 3, 4, 11liminfval3 43331 . . 3 (⊤ → (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))))
1312mptru 1546 . 2 (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥)))
14 mpt0 6575 . . 3 (𝑥 ∈ ∅ ↦ (∅‘𝑥)) = ∅
1514fveq2i 6777 . 2 (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = (lim inf‘∅)
16 mpt0 6575 . . . . . 6 (𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥)) = ∅
1716fveq2i 6777 . . . . 5 (lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = (lim sup‘∅)
18 limsup0 43235 . . . . 5 (lim sup‘∅) = -∞
1917, 18eqtri 2766 . . . 4 (lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = -∞
2019xnegeqi 42980 . . 3 -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = -𝑒-∞
21 xnegmnf 12944 . . 3 -𝑒-∞ = +∞
2220, 21eqtri 2766 . 2 -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = +∞
2313, 15, 223eqtr3i 2774 1 (lim inf‘∅) = +∞
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wtru 1540  wcel 2106  Vcvv 3432  cin 3886  c0 4256  cmpt 5157  cfv 6433  (class class class)co 7275  0cc0 10871  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008  -𝑒cxne 12845  [,)cico 13081  lim supclsp 15179  lim infclsi 43292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-xneg 12848  df-ico 13085  df-limsup 15180  df-liminf 43293
This theorem is referenced by:  liminflelimsupcex  43338
  Copyright terms: Public domain W3C validator