Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  liminf0 Structured version   Visualization version   GIF version

Theorem liminf0 42081
Description: The inferior limit of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
liminf0 (lim inf‘∅) = +∞

Proof of Theorem liminf0
StepHypRef Expression
1 nftru 1805 . . . 4 𝑥
2 0ex 5213 . . . . 5 ∅ ∈ V
32a1i 11 . . . 4 (⊤ → ∅ ∈ V)
4 0red 10646 . . . 4 (⊤ → 0 ∈ ℝ)
5 noel 4298 . . . . . . 7 ¬ 𝑥 ∈ ∅
6 elinel1 4174 . . . . . . . 8 (𝑥 ∈ (∅ ∩ (0[,)+∞)) → 𝑥 ∈ ∅)
76con3i 157 . . . . . . 7 𝑥 ∈ ∅ → ¬ 𝑥 ∈ (∅ ∩ (0[,)+∞)))
85, 7ax-mp 5 . . . . . 6 ¬ 𝑥 ∈ (∅ ∩ (0[,)+∞))
9 pm2.21 123 . . . . . 6 𝑥 ∈ (∅ ∩ (0[,)+∞)) → (𝑥 ∈ (∅ ∩ (0[,)+∞)) → (∅‘𝑥) ∈ ℝ*))
108, 9ax-mp 5 . . . . 5 (𝑥 ∈ (∅ ∩ (0[,)+∞)) → (∅‘𝑥) ∈ ℝ*)
1110adantl 484 . . . 4 ((⊤ ∧ 𝑥 ∈ (∅ ∩ (0[,)+∞))) → (∅‘𝑥) ∈ ℝ*)
121, 3, 4, 11liminfval3 42078 . . 3 (⊤ → (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))))
1312mptru 1544 . 2 (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥)))
14 mpt0 6492 . . 3 (𝑥 ∈ ∅ ↦ (∅‘𝑥)) = ∅
1514fveq2i 6675 . 2 (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = (lim inf‘∅)
16 mpt0 6492 . . . . . 6 (𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥)) = ∅
1716fveq2i 6675 . . . . 5 (lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = (lim sup‘∅)
18 limsup0 41982 . . . . 5 (lim sup‘∅) = -∞
1917, 18eqtri 2846 . . . 4 (lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = -∞
2019xnegeqi 41721 . . 3 -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = -𝑒-∞
21 xnegmnf 12606 . . 3 -𝑒-∞ = +∞
2220, 21eqtri 2846 . 2 -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = +∞
2313, 15, 223eqtr3i 2854 1 (lim inf‘∅) = +∞
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wtru 1538  wcel 2114  Vcvv 3496  cin 3937  c0 4293  cmpt 5148  cfv 6357  (class class class)co 7158  0cc0 10539  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676  -𝑒cxne 12507  [,)cico 12743  lim supclsp 14829  lim infclsi 42039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-xneg 12510  df-ico 12747  df-limsup 14830  df-liminf 42040
This theorem is referenced by:  liminflelimsupcex  42085
  Copyright terms: Public domain W3C validator