Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > liminf0 | Structured version Visualization version GIF version |
Description: The inferior limit of the empty set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
liminf0 | ⊢ (lim inf‘∅) = +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1805 | . . . 4 ⊢ Ⅎ𝑥⊤ | |
2 | 0ex 5252 | . . . . 5 ⊢ ∅ ∈ V | |
3 | 2 | a1i 11 | . . . 4 ⊢ (⊤ → ∅ ∈ V) |
4 | 0red 11080 | . . . 4 ⊢ (⊤ → 0 ∈ ℝ) | |
5 | noel 4278 | . . . . . . 7 ⊢ ¬ 𝑥 ∈ ∅ | |
6 | elinel1 4143 | . . . . . . . 8 ⊢ (𝑥 ∈ (∅ ∩ (0[,)+∞)) → 𝑥 ∈ ∅) | |
7 | 6 | con3i 154 | . . . . . . 7 ⊢ (¬ 𝑥 ∈ ∅ → ¬ 𝑥 ∈ (∅ ∩ (0[,)+∞))) |
8 | 5, 7 | ax-mp 5 | . . . . . 6 ⊢ ¬ 𝑥 ∈ (∅ ∩ (0[,)+∞)) |
9 | pm2.21 123 | . . . . . 6 ⊢ (¬ 𝑥 ∈ (∅ ∩ (0[,)+∞)) → (𝑥 ∈ (∅ ∩ (0[,)+∞)) → (∅‘𝑥) ∈ ℝ*)) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (𝑥 ∈ (∅ ∩ (0[,)+∞)) → (∅‘𝑥) ∈ ℝ*) |
11 | 10 | adantl 482 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (∅ ∩ (0[,)+∞))) → (∅‘𝑥) ∈ ℝ*) |
12 | 1, 3, 4, 11 | liminfval3 43719 | . . 3 ⊢ (⊤ → (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥)))) |
13 | 12 | mptru 1547 | . 2 ⊢ (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) |
14 | mpt0 6627 | . . 3 ⊢ (𝑥 ∈ ∅ ↦ (∅‘𝑥)) = ∅ | |
15 | 14 | fveq2i 6829 | . 2 ⊢ (lim inf‘(𝑥 ∈ ∅ ↦ (∅‘𝑥))) = (lim inf‘∅) |
16 | mpt0 6627 | . . . . . 6 ⊢ (𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥)) = ∅ | |
17 | 16 | fveq2i 6829 | . . . . 5 ⊢ (lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = (lim sup‘∅) |
18 | limsup0 43623 | . . . . 5 ⊢ (lim sup‘∅) = -∞ | |
19 | 17, 18 | eqtri 2764 | . . . 4 ⊢ (lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = -∞ |
20 | 19 | xnegeqi 43367 | . . 3 ⊢ -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = -𝑒-∞ |
21 | xnegmnf 13046 | . . 3 ⊢ -𝑒-∞ = +∞ | |
22 | 20, 21 | eqtri 2764 | . 2 ⊢ -𝑒(lim sup‘(𝑥 ∈ ∅ ↦ -𝑒(∅‘𝑥))) = +∞ |
23 | 13, 15, 22 | 3eqtr3i 2772 | 1 ⊢ (lim inf‘∅) = +∞ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 Vcvv 3441 ∩ cin 3897 ∅c0 4270 ↦ cmpt 5176 ‘cfv 6480 (class class class)co 7338 0cc0 10973 +∞cpnf 11108 -∞cmnf 11109 ℝ*cxr 11110 -𝑒cxne 12947 [,)cico 13183 lim supclsp 15279 lim infclsi 43680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-pre-sup 11051 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-sup 9300 df-inf 9301 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-div 11735 df-nn 12076 df-n0 12336 df-z 12422 df-uz 12685 df-q 12791 df-xneg 12950 df-ico 13187 df-limsup 15280 df-liminf 43681 |
This theorem is referenced by: liminflelimsupcex 43726 |
Copyright terms: Public domain | W3C validator |