Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xnn0nn0d Structured version   Visualization version   GIF version

Theorem xnn0nn0d 32750
Description: Conditions for an extended nonnegative integer to be a nonnegative integer. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
xnn0nnd.1 (𝜑𝑁 ∈ ℕ0*)
xnn0nnd.2 (𝜑𝑁 ∈ ℝ)
Assertion
Ref Expression
xnn0nn0d (𝜑𝑁 ∈ ℕ0)

Proof of Theorem xnn0nn0d
StepHypRef Expression
1 xnn0nnd.1 . . 3 (𝜑𝑁 ∈ ℕ0*)
2 elxnn0 12453 . . 3 (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
31, 2sylib 218 . 2 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
4 xnn0nnd.2 . . . 4 (𝜑𝑁 ∈ ℝ)
54renepnfd 11160 . . 3 (𝜑𝑁 ≠ +∞)
65neneqd 2933 . 2 (𝜑 → ¬ 𝑁 = +∞)
73, 6olcnd 877 1 (𝜑𝑁 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2111  cr 11002  +∞cpnf 11140  0cn0 12378  0*cxnn0 12451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-nel 3033  df-rab 3396  df-v 3438  df-un 3907  df-in 3909  df-ss 3919  df-pw 4552  df-sn 4577  df-pr 4579  df-uni 4860  df-pnf 11145  df-xnn0 12452
This theorem is referenced by:  xnn0nnd  32751  constrext2chnlem  33758
  Copyright terms: Public domain W3C validator