Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xnn0nn0d Structured version   Visualization version   GIF version

Theorem xnn0nn0d 32704
Description: Conditions for an extended nonnegative integer to be a nonnegative integer. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
xnn0nnd.1 (𝜑𝑁 ∈ ℕ0*)
xnn0nnd.2 (𝜑𝑁 ∈ ℝ)
Assertion
Ref Expression
xnn0nn0d (𝜑𝑁 ∈ ℕ0)

Proof of Theorem xnn0nn0d
StepHypRef Expression
1 xnn0nnd.1 . . 3 (𝜑𝑁 ∈ ℕ0*)
2 elxnn0 12583 . . 3 (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
31, 2sylib 218 . 2 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
4 xnn0nnd.2 . . . 4 (𝜑𝑁 ∈ ℝ)
54renepnfd 11293 . . 3 (𝜑𝑁 ≠ +∞)
65neneqd 2936 . 2 (𝜑 → ¬ 𝑁 = +∞)
73, 6olcnd 877 1 (𝜑𝑁 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1539  wcel 2107  cr 11135  +∞cpnf 11273  0cn0 12508  0*cxnn0 12581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-nel 3036  df-rab 3420  df-v 3465  df-un 3936  df-in 3938  df-ss 3948  df-pw 4582  df-sn 4607  df-pr 4609  df-uni 4888  df-pnf 11278  df-xnn0 12582
This theorem is referenced by:  xnn0nnd  32705  constrext2chnlem  33721
  Copyright terms: Public domain W3C validator