Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xnn0nn0d Structured version   Visualization version   GIF version

Theorem xnn0nn0d 32695
Description: Conditions for an extended nonnegative integer to be a nonnegative integer. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
xnn0nnd.1 (𝜑𝑁 ∈ ℕ0*)
xnn0nnd.2 (𝜑𝑁 ∈ ℝ)
Assertion
Ref Expression
xnn0nn0d (𝜑𝑁 ∈ ℕ0)

Proof of Theorem xnn0nn0d
StepHypRef Expression
1 xnn0nnd.1 . . 3 (𝜑𝑁 ∈ ℕ0*)
2 elxnn0 12517 . . 3 (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
31, 2sylib 218 . 2 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
4 xnn0nnd.2 . . . 4 (𝜑𝑁 ∈ ℝ)
54renepnfd 11225 . . 3 (𝜑𝑁 ≠ +∞)
65neneqd 2930 . 2 (𝜑 → ¬ 𝑁 = +∞)
73, 6olcnd 877 1 (𝜑𝑁 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  cr 11067  +∞cpnf 11205  0cn0 12442  0*cxnn0 12515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-nel 3030  df-rab 3406  df-v 3449  df-un 3919  df-in 3921  df-ss 3931  df-pw 4565  df-sn 4590  df-pr 4592  df-uni 4872  df-pnf 11210  df-xnn0 12516
This theorem is referenced by:  xnn0nnd  32696  constrext2chnlem  33740
  Copyright terms: Public domain W3C validator