| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xnn0nn0d | Structured version Visualization version GIF version | ||
| Description: Conditions for an extended nonnegative integer to be a nonnegative integer. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| xnn0nnd.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0*) |
| xnn0nnd.2 | ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| Ref | Expression |
|---|---|
| xnn0nn0d | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnn0nnd.1 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0*) | |
| 2 | elxnn0 12463 | . . 3 ⊢ (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) |
| 4 | xnn0nnd.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℝ) | |
| 5 | 4 | renepnfd 11170 | . . 3 ⊢ (𝜑 → 𝑁 ≠ +∞) |
| 6 | 5 | neneqd 2934 | . 2 ⊢ (𝜑 → ¬ 𝑁 = +∞) |
| 7 | 3, 6 | olcnd 877 | 1 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ℝcr 11012 +∞cpnf 11150 ℕ0cn0 12388 ℕ0*cxnn0 12461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-nel 3034 df-rab 3397 df-v 3439 df-un 3903 df-in 3905 df-ss 3915 df-pw 4551 df-sn 4576 df-pr 4578 df-uni 4859 df-pnf 11155 df-xnn0 12462 |
| This theorem is referenced by: xnn0nnd 32760 constrext2chnlem 33784 |
| Copyright terms: Public domain | W3C validator |