| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xnn0nn0d | Structured version Visualization version GIF version | ||
| Description: Conditions for an extended nonnegative integer to be a nonnegative integer. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| xnn0nnd.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0*) |
| xnn0nnd.2 | ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| Ref | Expression |
|---|---|
| xnn0nn0d | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnn0nnd.1 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0*) | |
| 2 | elxnn0 12453 | . . 3 ⊢ (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) |
| 4 | xnn0nnd.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℝ) | |
| 5 | 4 | renepnfd 11160 | . . 3 ⊢ (𝜑 → 𝑁 ≠ +∞) |
| 6 | 5 | neneqd 2933 | . 2 ⊢ (𝜑 → ¬ 𝑁 = +∞) |
| 7 | 3, 6 | olcnd 877 | 1 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ℝcr 11002 +∞cpnf 11140 ℕ0cn0 12378 ℕ0*cxnn0 12451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-rab 3396 df-v 3438 df-un 3907 df-in 3909 df-ss 3919 df-pw 4552 df-sn 4577 df-pr 4579 df-uni 4860 df-pnf 11145 df-xnn0 12452 |
| This theorem is referenced by: xnn0nnd 32751 constrext2chnlem 33758 |
| Copyright terms: Public domain | W3C validator |