| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xnn0nn0d | Structured version Visualization version GIF version | ||
| Description: Conditions for an extended nonnegative integer to be a nonnegative integer. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| xnn0nnd.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ0*) |
| xnn0nnd.2 | ⊢ (𝜑 → 𝑁 ∈ ℝ) |
| Ref | Expression |
|---|---|
| xnn0nn0d | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnn0nnd.1 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0*) | |
| 2 | elxnn0 12533 | . . 3 ⊢ (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (𝜑 → (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) |
| 4 | xnn0nnd.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℝ) | |
| 5 | 4 | renepnfd 11243 | . . 3 ⊢ (𝜑 → 𝑁 ≠ +∞) |
| 6 | 5 | neneqd 2932 | . 2 ⊢ (𝜑 → ¬ 𝑁 = +∞) |
| 7 | 3, 6 | olcnd 877 | 1 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ℝcr 11085 +∞cpnf 11223 ℕ0cn0 12458 ℕ0*cxnn0 12531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-nel 3032 df-rab 3412 df-v 3457 df-un 3927 df-in 3929 df-ss 3939 df-pw 4573 df-sn 4598 df-pr 4600 df-uni 4880 df-pnf 11228 df-xnn0 12532 |
| This theorem is referenced by: xnn0nnd 32704 constrext2chnlem 33748 |
| Copyright terms: Public domain | W3C validator |