MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  renepnfd Structured version   Visualization version   GIF version

Theorem renepnfd 11166
Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rexrd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
renepnfd (𝜑𝐴 ≠ +∞)

Proof of Theorem renepnfd
StepHypRef Expression
1 rexrd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 renepnf 11163 . 2 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
31, 2syl 17 1 (𝜑𝐴 ≠ +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2925  cr 11008  +∞cpnf 11146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-pr 5371  ax-un 7671  ax-resscn 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-nel 3030  df-rab 3395  df-v 3438  df-un 3908  df-in 3910  df-ss 3920  df-pw 4553  df-sn 4578  df-pr 4580  df-uni 4859  df-pnf 11151
This theorem is referenced by:  xaddnepnf  13139  dvfsumrlimge0  25935  dvfsumrlim  25936  dvfsumrlim2  25937  logno1  26543  rexmul2  32706  xnn0nn0d  32724  fldextrspundgdvdslem  33663  limsupresico  45701  limsupvaluz2  45739  supcnvlimsup  45741  liminfresico  45772  xlimliminflimsup  45863  smflimsuplem2  46822  smflimsuplem5  46825
  Copyright terms: Public domain W3C validator