MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  renepnfd Structured version   Visualization version   GIF version

Theorem renepnfd 11341
Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rexrd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
renepnfd (𝜑𝐴 ≠ +∞)

Proof of Theorem renepnfd
StepHypRef Expression
1 rexrd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 renepnf 11338 . 2 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
31, 2syl 17 1 (𝜑𝐴 ≠ +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2946  cr 11183  +∞cpnf 11321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-pr 5447  ax-un 7770  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-nel 3053  df-rab 3444  df-v 3490  df-un 3981  df-in 3983  df-ss 3993  df-pw 4624  df-sn 4649  df-pr 4651  df-uni 4932  df-pnf 11326
This theorem is referenced by:  xaddnepnf  13299  dvfsumrlimge0  26091  dvfsumrlim  26092  dvfsumrlim2  26093  logno1  26696  limsupresico  45621  limsupvaluz2  45659  supcnvlimsup  45661  liminfresico  45692  xlimliminflimsup  45783  smflimsuplem2  46742  smflimsuplem5  46745
  Copyright terms: Public domain W3C validator