![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > renepnfd | Structured version Visualization version GIF version |
Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rexrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
renepnfd | ⊢ (𝜑 → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | renepnf 11293 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≠ +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ≠ wne 2937 ℝcr 11138 +∞cpnf 11276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-pr 5429 ax-un 7740 ax-resscn 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-nel 3044 df-rab 3430 df-v 3473 df-un 3952 df-in 3954 df-ss 3964 df-pw 4605 df-sn 4630 df-pr 4632 df-uni 4909 df-pnf 11281 |
This theorem is referenced by: xaddnepnf 13249 dvfsumrlimge0 25978 dvfsumrlim 25979 dvfsumrlim2 25980 logno1 26583 limsupresico 45088 limsupvaluz2 45126 supcnvlimsup 45128 liminfresico 45159 xlimliminflimsup 45250 smflimsuplem2 46209 smflimsuplem5 46212 |
Copyright terms: Public domain | W3C validator |