MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  renepnfd Structured version   Visualization version   GIF version

Theorem renepnfd 11312
Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rexrd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
renepnfd (𝜑𝐴 ≠ +∞)

Proof of Theorem renepnfd
StepHypRef Expression
1 rexrd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 renepnf 11309 . 2 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
31, 2syl 17 1 (𝜑𝐴 ≠ +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2940  cr 11154  +∞cpnf 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-pr 5432  ax-un 7755  ax-resscn 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-nel 3047  df-rab 3437  df-v 3482  df-un 3956  df-in 3958  df-ss 3968  df-pw 4602  df-sn 4627  df-pr 4629  df-uni 4908  df-pnf 11297
This theorem is referenced by:  xaddnepnf  13279  dvfsumrlimge0  26071  dvfsumrlim  26072  dvfsumrlim2  26073  logno1  26678  fldextrspundgdvdslem  33730  limsupresico  45715  limsupvaluz2  45753  supcnvlimsup  45755  liminfresico  45786  xlimliminflimsup  45877  smflimsuplem2  46836  smflimsuplem5  46839
  Copyright terms: Public domain W3C validator