![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > renepnfd | Structured version Visualization version GIF version |
Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rexrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
renepnfd | ⊢ (𝜑 → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | renepnf 11338 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≠ +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2946 ℝcr 11183 +∞cpnf 11321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pr 5447 ax-un 7770 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-nel 3053 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 df-pnf 11326 |
This theorem is referenced by: xaddnepnf 13299 dvfsumrlimge0 26091 dvfsumrlim 26092 dvfsumrlim2 26093 logno1 26696 limsupresico 45621 limsupvaluz2 45659 supcnvlimsup 45661 liminfresico 45692 xlimliminflimsup 45783 smflimsuplem2 46742 smflimsuplem5 46745 |
Copyright terms: Public domain | W3C validator |