MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  renepnfd Structured version   Visualization version   GIF version

Theorem renepnfd 11163
Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rexrd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
renepnfd (𝜑𝐴 ≠ +∞)

Proof of Theorem renepnfd
StepHypRef Expression
1 rexrd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 renepnf 11160 . 2 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
31, 2syl 17 1 (𝜑𝐴 ≠ +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wne 2928  cr 11005  +∞cpnf 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-pr 5368  ax-un 7668  ax-resscn 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-nel 3033  df-rab 3396  df-v 3438  df-un 3902  df-in 3904  df-ss 3914  df-pw 4549  df-sn 4574  df-pr 4576  df-uni 4857  df-pnf 11148
This theorem is referenced by:  xaddnepnf  13136  dvfsumrlimge0  25964  dvfsumrlim  25965  dvfsumrlim2  25966  logno1  26572  rexmul2  32737  xnn0nn0d  32755  fldextrspundgdvdslem  33693  limsupresico  45797  limsupvaluz2  45835  supcnvlimsup  45837  liminfresico  45868  xlimliminflimsup  45959  smflimsuplem2  46918  smflimsuplem5  46921
  Copyright terms: Public domain W3C validator