| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renepnfd | Structured version Visualization version GIF version | ||
| Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rexrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| renepnfd | ⊢ (𝜑 → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | renepnf 11163 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≠ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 ℝcr 11008 +∞cpnf 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-pr 5371 ax-un 7671 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-rab 3395 df-v 3438 df-un 3908 df-in 3910 df-ss 3920 df-pw 4553 df-sn 4578 df-pr 4580 df-uni 4859 df-pnf 11151 |
| This theorem is referenced by: xaddnepnf 13139 dvfsumrlimge0 25935 dvfsumrlim 25936 dvfsumrlim2 25937 logno1 26543 rexmul2 32706 xnn0nn0d 32724 fldextrspundgdvdslem 33663 limsupresico 45701 limsupvaluz2 45739 supcnvlimsup 45741 liminfresico 45772 xlimliminflimsup 45863 smflimsuplem2 46822 smflimsuplem5 46825 |
| Copyright terms: Public domain | W3C validator |