| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renepnfd | Structured version Visualization version GIF version | ||
| Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rexrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| renepnfd | ⊢ (𝜑 → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | renepnf 11160 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≠ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ℝcr 11005 +∞cpnf 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pr 5368 ax-un 7668 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-nel 3033 df-rab 3396 df-v 3438 df-un 3902 df-in 3904 df-ss 3914 df-pw 4549 df-sn 4574 df-pr 4576 df-uni 4857 df-pnf 11148 |
| This theorem is referenced by: xaddnepnf 13136 dvfsumrlimge0 25964 dvfsumrlim 25965 dvfsumrlim2 25966 logno1 26572 rexmul2 32737 xnn0nn0d 32755 fldextrspundgdvdslem 33693 limsupresico 45797 limsupvaluz2 45835 supcnvlimsup 45837 liminfresico 45868 xlimliminflimsup 45959 smflimsuplem2 46918 smflimsuplem5 46921 |
| Copyright terms: Public domain | W3C validator |