MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  renepnfd Structured version   Visualization version   GIF version

Theorem renepnfd 11264
Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rexrd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
renepnfd (𝜑𝐴 ≠ +∞)

Proof of Theorem renepnfd
StepHypRef Expression
1 rexrd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 renepnf 11261 . 2 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
31, 2syl 17 1 (𝜑𝐴 ≠ +∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wne 2940  cr 11108  +∞cpnf 11244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-pr 5427  ax-un 7724  ax-resscn 11166
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-nel 3047  df-rab 3433  df-v 3476  df-un 3953  df-in 3955  df-ss 3965  df-pw 4604  df-sn 4629  df-pr 4631  df-uni 4909  df-pnf 11249
This theorem is referenced by:  xaddnepnf  13215  dvfsumrlimge0  25546  dvfsumrlim  25547  dvfsumrlim2  25548  logno1  26143  limsupresico  44406  limsupvaluz2  44444  supcnvlimsup  44446  liminfresico  44477  xlimliminflimsup  44568  smflimsuplem2  45527  smflimsuplem5  45530
  Copyright terms: Public domain W3C validator