Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrext2chnlem Structured version   Visualization version   GIF version

Theorem constrext2chnlem 33721
Description: Lemma for constrext2chn 33722. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrextdg2.1 𝐸 = (ℂflds 𝑒)
constrextdg2.2 𝐹 = (ℂflds 𝑓)
constrextdg2.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
constrextdg2.n (𝜑𝑁 ∈ ω)
constrext2chnlem.q 𝑄 = (ℂflds ℚ)
constrext2chnlem.l 𝐿 = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
constrext2chnlem.a (𝜑𝐴 ∈ Constr)
Assertion
Ref Expression
constrext2chnlem (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Distinct variable groups:   < ,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑛,𝑟,𝑠,𝑡,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑛,𝑟,𝑠,𝑡,𝑥   𝑡,𝑁   𝐴,𝑛   𝑛,𝐿   𝑄,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐴(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑄(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑥,𝑡,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑥,𝑡,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐿(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑁(𝑥,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrext2chnlem
Dummy variables 𝑣 𝑚 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2prm 16710 . . . . . 6 2 ∈ ℙ
21a1i 11 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 2 ∈ ℙ)
3 constrext2chnlem.l . . . . . . 7 𝐿 = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
4 constrext2chnlem.q . . . . . . 7 𝑄 = (ℂflds ℚ)
53, 4oveq12i 7424 . . . . . 6 (𝐿[:]𝑄) = ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))
6 cnfldbas 21329 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
7 eqid 2734 . . . . . . . . . 10 (ℂflds ℚ) = (ℂflds ℚ)
8 eqid 2734 . . . . . . . . . 10 (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
9 cnfldfld 33297 . . . . . . . . . . 11 fld ∈ Field
109a1i 11 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℂfld ∈ Field)
11 cndrng 21372 . . . . . . . . . . . 12 fld ∈ DivRing
12 qsubdrg 21398 . . . . . . . . . . . . 13 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1312simpli 483 . . . . . . . . . . . 12 ℚ ∈ (SubRing‘ℂfld)
1412simpri 485 . . . . . . . . . . . 12 (ℂflds ℚ) ∈ DivRing
15 issdrg 20756 . . . . . . . . . . . 12 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
1611, 13, 14, 15mpbir3an 1341 . . . . . . . . . . 11 ℚ ∈ (SubDRing‘ℂfld)
1716a1i 11 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ∈ (SubDRing‘ℂfld))
18 constr0.1 . . . . . . . . . . . . . 14 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
19 nnon 7874 . . . . . . . . . . . . . . 15 (𝑚 ∈ ω → 𝑚 ∈ On)
2019adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ω) → 𝑚 ∈ On)
2118, 20constrsscn 33711 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ω) → (𝐶𝑚) ⊆ ℂ)
2221sselda 3963 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → 𝐴 ∈ ℂ)
2322snssd 4789 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → {𝐴} ⊆ ℂ)
2423ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → {𝐴} ⊆ ℂ)
256, 7, 8, 10, 17, 24fldgenfldext 33646 . . . . . . . . 9 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ))
2625ad2antrr 726 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ))
27 extdgcl 33635 . . . . . . . 8 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0*)
2826, 27syl 17 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0*)
29 simpr 484 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝))
30 2z 12631 . . . . . . . . . . . 12 2 ∈ ℤ
3130a1i 11 . . . . . . . . . . 11 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 2 ∈ ℤ)
32 simplr 768 . . . . . . . . . . 11 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 𝑝 ∈ ℕ0)
3331, 32zexpcld 14109 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (2↑𝑝) ∈ ℤ)
3429, 33eqeltrd 2833 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) ∈ ℤ)
3534zred 12704 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) ∈ ℝ)
36 xnn0xr 12586 . . . . . . . . 9 (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0* → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*)
3726, 27, 363syl 18 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*)
38 eqid 2734 . . . . . . . . . . . . 13 (Base‘(ℂflds (lastS‘𝑣))) = (Base‘(ℂflds (lastS‘𝑣)))
39 constrextdg2.1 . . . . . . . . . . . . . . . 16 𝐸 = (ℂflds 𝑒)
40 constrextdg2.2 . . . . . . . . . . . . . . . 16 𝐹 = (ℂflds 𝑓)
41 constrextdg2.l . . . . . . . . . . . . . . . 16 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
42 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
43 simprl 770 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (𝑣‘0) = ℚ)
4443oveq2d 7428 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (𝑣‘0)) = (ℂflds ℚ))
45 eqidd 2735 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣)) = (ℂflds (lastS‘𝑣)))
46 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → 𝑣 = ∅)
4746fveq1d 6887 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = (∅‘0))
48 0fv 6929 . . . . . . . . . . . . . . . . . . . . 21 (∅‘0) = ∅
4948a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (∅‘0) = ∅)
5047, 49eqtrd 2769 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = ∅)
5143adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = ℚ)
52 1nn 12258 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ
53 nnq 12985 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ ℕ → 1 ∈ ℚ)
5452, 53ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℚ
5554ne0ii 4324 . . . . . . . . . . . . . . . . . . . . . 22 ℚ ≠ ∅
5655a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → ℚ ≠ ∅)
5751, 56eqnetrd 2998 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) ≠ ∅)
5857neneqd 2936 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → ¬ (𝑣‘0) = ∅)
5950, 58pm2.65da 816 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ¬ 𝑣 = ∅)
6059neqned 2938 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ≠ ∅)
6142, 60hashne0 32744 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 0 < (♯‘𝑣))
6239, 40, 41, 42, 10, 44, 45, 61fldext2chn 33699 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ) ∧ ∃𝑝 ∈ ℕ0 ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)))
6362simpld 494 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ))
64 fldextfld1 33626 . . . . . . . . . . . . . 14 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ) → (ℂflds (lastS‘𝑣)) ∈ Field)
6563, 64syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣)) ∈ Field)
6642chnwrd 32927 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ∈ Word (SubDRing‘ℂfld))
67 lswcl 14587 . . . . . . . . . . . . . . 15 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ 𝑣 ≠ ∅) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
6866, 60, 67syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
6911a1i 11 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℂfld ∈ DivRing)
70 qsscn 12983 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ ℂ
7170a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ℚ ⊆ ℂ)
7271, 23unssd 4172 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → (ℚ ∪ {𝐴}) ⊆ ℂ)
7372ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℚ ∪ {𝐴}) ⊆ ℂ)
746, 69, 73fldgensdrg 33247 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld))
757qrngbas 27598 . . . . . . . . . . . . . . . . . . 19 ℚ = (Base‘(ℂflds ℚ))
7675, 63fldextsdrg 33633 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
7738sdrgss 20761 . . . . . . . . . . . . . . . . . 18 (ℚ ∈ (SubDRing‘(ℂflds (lastS‘𝑣))) → ℚ ⊆ (Base‘(ℂflds (lastS‘𝑣))))
7876, 77syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ⊆ (Base‘(ℂflds (lastS‘𝑣))))
796sdrgss 20761 . . . . . . . . . . . . . . . . . . 19 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ⊆ ℂ)
8068, 79syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ⊆ ℂ)
81 eqid 2734 . . . . . . . . . . . . . . . . . . 19 (ℂflds (lastS‘𝑣)) = (ℂflds (lastS‘𝑣))
8281, 6ressbas2 17260 . . . . . . . . . . . . . . . . . 18 ((lastS‘𝑣) ⊆ ℂ → (lastS‘𝑣) = (Base‘(ℂflds (lastS‘𝑣))))
8380, 82syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) = (Base‘(ℂflds (lastS‘𝑣))))
8478, 83sseqtrrd 4001 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ⊆ (lastS‘𝑣))
85 simprr 772 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (𝐶𝑚) ⊆ (lastS‘𝑣))
86 simpllr 775 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝐴 ∈ (𝐶𝑚))
8785, 86sseldd 3964 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝐴 ∈ (lastS‘𝑣))
8887snssd 4789 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → {𝐴} ⊆ (lastS‘𝑣))
8984, 88unssd 4172 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℚ ∪ {𝐴}) ⊆ (lastS‘𝑣))
906, 69, 68, 89fldgenssp 33251 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))
91 id 22 . . . . . . . . . . . . . . . 16 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9281, 91subsdrg 33231 . . . . . . . . . . . . . . 15 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))) ↔ ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld) ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))))
9392biimpar 477 . . . . . . . . . . . . . 14 (((lastS‘𝑣) ∈ (SubDRing‘ℂfld) ∧ ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld) ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
9468, 74, 90, 93syl12anc 836 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
9538, 65, 94sdrgfldext 33629 . . . . . . . . . . . 12 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))))
9668elexd 3487 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ∈ V)
97 ressabs 17270 . . . . . . . . . . . . 13 (((lastS‘𝑣) ∈ V ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣)) → ((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
9896, 90, 97syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
9995, 98breqtrd 5149 . . . . . . . . . . 11 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
10099ad2antrr 726 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
101 extdgcl 33635 . . . . . . . . . 10 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0*)
102100, 101syl 17 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0*)
103 xnn0xr 12586 . . . . . . . . 9 (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0* → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ*)
104102, 103syl 17 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ*)
105 extdggt0 33636 . . . . . . . . 9 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) → 0 < ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))))
106100, 105syl 17 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 0 < ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))))
107 extdgmul 33642 . . . . . . . . . . 11 (((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) ∧ (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
10899, 25, 107syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
109108ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
110 xmulcom 13289 . . . . . . . . . 10 ((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ* ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
111104, 37, 110syl2anc 584 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
112109, 111eqtrd 2769 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
11335, 37, 104, 106, 112rexmul2 32685 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ)
114 extdggt0 33636 . . . . . . . 8 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ) → 0 < ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)))
11526, 114syl 17 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 0 < ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)))
11628, 113, 115xnn0nnd 32705 . . . . . 6 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ)
1175, 116eqeltrid 2837 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (𝐿[:]𝑄) ∈ ℕ)
11835, 104, 37, 115, 109rexmul2 32685 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ)
119102, 118xnn0nn0d 32704 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0)
120119nn0zd 12621 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℤ)
121116nnnn0d 12569 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0)
122121nn0zd 12621 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℤ)
123 rexmul 13294 . . . . . . . . . . 11 ((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
124118, 113, 123syl2anc 584 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
125109, 124eqtrd 2769 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
126125eqcomd 2740 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)))
127126, 29eqtrd 2769 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (2↑𝑝))
128 dvds0lem 16285 . . . . . . 7 (((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℤ ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℤ ∧ (2↑𝑝) ∈ ℤ) ∧ (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∥ (2↑𝑝))
129120, 122, 33, 127, 128syl31anc 1374 . . . . . 6 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∥ (2↑𝑝))
1305, 129eqbrtrid 5158 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (𝐿[:]𝑄) ∥ (2↑𝑝))
131 dvdsprmpweq 16903 . . . . . 6 ((2 ∈ ℙ ∧ (𝐿[:]𝑄) ∈ ℕ ∧ 𝑝 ∈ ℕ0) → ((𝐿[:]𝑄) ∥ (2↑𝑝) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)))
132131imp 406 . . . . 5 (((2 ∈ ℙ ∧ (𝐿[:]𝑄) ∈ ℕ ∧ 𝑝 ∈ ℕ0) ∧ (𝐿[:]𝑄) ∥ (2↑𝑝)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
1332, 117, 32, 130, 132syl31anc 1374 . . . 4 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
13462simprd 495 . . . 4 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ∃𝑝 ∈ ℕ0 ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝))
135133, 134r19.29a 3149 . . 3 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
136 simplr 768 . . . 4 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → 𝑚 ∈ ω)
13718, 39, 40, 41, 136constrextdg2 33720 . . 3 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)))
138135, 137r19.29a 3149 . 2 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
139 constrext2chnlem.a . . 3 (𝜑𝐴 ∈ Constr)
14018isconstr 33707 . . 3 (𝐴 ∈ Constr ↔ ∃𝑚 ∈ ω 𝐴 ∈ (𝐶𝑚))
141139, 140sylib 218 . 2 (𝜑 → ∃𝑚 ∈ ω 𝐴 ∈ (𝐶𝑚))
142138, 141r19.29a 3149 1 (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3419  Vcvv 3463  cun 3929  wss 3931  c0 4313  {csn 4606  {cpr 4608   class class class wbr 5123  {copab 5185  cmpt 5205  Oncon0 6363  cfv 6540  (class class class)co 7412  ωcom 7868  reccrdg 8430  cc 11134  cr 11135  0cc0 11136  1c1 11137   + caddc 11139   · cmul 11141  *cxr 11275   < clt 11276  cmin 11473  cn 12247  2c2 12302  0cn0 12508  0*cxnn0 12581  cz 12595  cq 12971   ·e cxmu 13134  cexp 14083  Word cword 14533  lastSclsw 14581  ccj 15116  cim 15118  abscabs 15254  cdvds 16271  cprime 16689  Basecbs 17228  s cress 17251  SubRingcsubrg 20536  DivRingcdr 20696  Fieldcfield 20697  SubDRingcsdrg 20754  fldccnfld 21325  Chaincchn 32924   fldGen cfldgen 33243  /FldExtcfldext 33615  [:]cextdg 33618  Constrcconstr 33700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-reg 9613  ax-inf2 9662  ax-ac2 10484  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214  ax-addf 11215  ax-mulf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7678  df-ofr 7679  df-rpss 7724  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8726  df-ec 8728  df-qs 8732  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9383  df-sup 9463  df-inf 9464  df-oi 9531  df-r1 9785  df-rank 9786  df-dju 9922  df-card 9960  df-acn 9963  df-ac 10137  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-2 12310  df-3 12311  df-4 12312  df-5 12313  df-6 12314  df-7 12315  df-8 12316  df-9 12317  df-n0 12509  df-xnn0 12582  df-z 12596  df-dec 12716  df-uz 12860  df-q 12972  df-rp 13016  df-xneg 13135  df-xmul 13137  df-ico 13374  df-fz 13529  df-fzo 13676  df-fl 13813  df-mod 13891  df-seq 14024  df-exp 14084  df-hash 14351  df-word 14534  df-lsw 14582  df-concat 14590  df-s1 14615  df-substr 14660  df-pfx 14690  df-cj 15119  df-re 15120  df-im 15121  df-sqrt 15255  df-abs 15256  df-dvds 16272  df-gcd 16513  df-prm 16690  df-pc 16856  df-struct 17165  df-sets 17182  df-slot 17200  df-ndx 17212  df-base 17229  df-ress 17252  df-plusg 17285  df-mulr 17286  df-starv 17287  df-sca 17288  df-vsca 17289  df-ip 17290  df-tset 17291  df-ple 17292  df-ocomp 17293  df-ds 17294  df-unif 17295  df-hom 17296  df-cco 17297  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-imas 17523  df-qus 17524  df-mre 17599  df-mrc 17600  df-mri 17601  df-acs 17602  df-proset 18309  df-drs 18310  df-poset 18328  df-ipo 18541  df-mgm 18621  df-sgrp 18700  df-mnd 18716  df-mhm 18764  df-submnd 18765  df-grp 18922  df-minusg 18923  df-sbg 18924  df-mulg 19054  df-subg 19109  df-nsg 19110  df-eqg 19111  df-ghm 19199  df-gim 19245  df-cntz 19303  df-oppg 19332  df-lsm 19621  df-cmn 19767  df-abl 19768  df-mgp 20105  df-rng 20117  df-ur 20146  df-srg 20151  df-ring 20199  df-cring 20200  df-oppr 20301  df-dvdsr 20324  df-unit 20325  df-irred 20326  df-invr 20355  df-dvr 20368  df-rhm 20439  df-nzr 20480  df-subrng 20513  df-subrg 20537  df-rlreg 20661  df-domn 20662  df-idom 20663  df-drng 20698  df-field 20699  df-sdrg 20755  df-lmod 20827  df-lss 20897  df-lsp 20937  df-lmhm 20988  df-lmim 20989  df-lmic 20990  df-lbs 21041  df-lvec 21069  df-sra 21139  df-rgmod 21140  df-lidl 21179  df-rsp 21180  df-2idl 21221  df-lpidl 21293  df-lpir 21294  df-pid 21308  df-cnfld 21326  df-dsmm 21705  df-frlm 21720  df-uvc 21756  df-lindf 21779  df-linds 21780  df-assa 21826  df-asp 21827  df-ascl 21828  df-psr 21882  df-mvr 21883  df-mpl 21884  df-opsr 21886  df-evls 22045  df-evl 22046  df-psr1 22128  df-vr1 22129  df-ply1 22130  df-coe1 22131  df-evls1 22266  df-evl1 22267  df-mdeg 26029  df-deg1 26030  df-mon1 26105  df-uc1p 26106  df-q1p 26107  df-r1p 26108  df-ig1p 26109  df-chn 32925  df-fldgen 33244  df-mxidl 33414  df-dim 33576  df-fldext 33619  df-extdg 33620  df-irng 33662  df-minply 33671  df-constr 33701
This theorem is referenced by:  constrext2chn  33722
  Copyright terms: Public domain W3C validator