Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrext2chnlem Structured version   Visualization version   GIF version

Theorem constrext2chnlem 33716
Description: Lemma for constrext2chn 33725. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrextdg2.1 𝐸 = (ℂflds 𝑒)
constrextdg2.2 𝐹 = (ℂflds 𝑓)
constrextdg2.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
constrextdg2.n (𝜑𝑁 ∈ ω)
constrext2chnlem.q 𝑄 = (ℂflds ℚ)
constrext2chnlem.l 𝐿 = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
constrext2chnlem.a (𝜑𝐴 ∈ Constr)
Assertion
Ref Expression
constrext2chnlem (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Distinct variable groups:   < ,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑛,𝑟,𝑠,𝑡,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑛,𝑟,𝑠,𝑡,𝑥   𝑡,𝑁   𝐴,𝑛   𝑛,𝐿   𝑄,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐴(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑄(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑥,𝑡,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑥,𝑡,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐿(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑁(𝑥,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrext2chnlem
Dummy variables 𝑣 𝑚 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2prm 16621 . . . . . 6 2 ∈ ℙ
21a1i 11 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 2 ∈ ℙ)
3 constrext2chnlem.l . . . . . . 7 𝐿 = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
4 constrext2chnlem.q . . . . . . 7 𝑄 = (ℂflds ℚ)
53, 4oveq12i 7365 . . . . . 6 (𝐿[:]𝑄) = ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))
6 cnfldbas 21283 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
7 eqid 2729 . . . . . . . . . 10 (ℂflds ℚ) = (ℂflds ℚ)
8 eqid 2729 . . . . . . . . . 10 (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
9 cnfldfld 33290 . . . . . . . . . . 11 fld ∈ Field
109a1i 11 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℂfld ∈ Field)
11 cndrng 21323 . . . . . . . . . . . 12 fld ∈ DivRing
12 qsubdrg 21344 . . . . . . . . . . . . 13 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1312simpli 483 . . . . . . . . . . . 12 ℚ ∈ (SubRing‘ℂfld)
1412simpri 485 . . . . . . . . . . . 12 (ℂflds ℚ) ∈ DivRing
15 issdrg 20691 . . . . . . . . . . . 12 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
1611, 13, 14, 15mpbir3an 1342 . . . . . . . . . . 11 ℚ ∈ (SubDRing‘ℂfld)
1716a1i 11 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ∈ (SubDRing‘ℂfld))
18 constr0.1 . . . . . . . . . . . . . 14 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
19 nnon 7812 . . . . . . . . . . . . . . 15 (𝑚 ∈ ω → 𝑚 ∈ On)
2019adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ω) → 𝑚 ∈ On)
2118, 20constrsscn 33706 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ω) → (𝐶𝑚) ⊆ ℂ)
2221sselda 3937 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → 𝐴 ∈ ℂ)
2322snssd 4763 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → {𝐴} ⊆ ℂ)
2423ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → {𝐴} ⊆ ℂ)
256, 7, 8, 10, 17, 24fldgenfldext 33639 . . . . . . . . 9 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ))
2625ad2antrr 726 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ))
27 extdgcl 33628 . . . . . . . 8 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0*)
2826, 27syl 17 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0*)
29 simpr 484 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝))
30 2z 12525 . . . . . . . . . . . 12 2 ∈ ℤ
3130a1i 11 . . . . . . . . . . 11 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 2 ∈ ℤ)
32 simplr 768 . . . . . . . . . . 11 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 𝑝 ∈ ℕ0)
3331, 32zexpcld 14012 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (2↑𝑝) ∈ ℤ)
3429, 33eqeltrd 2828 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) ∈ ℤ)
3534zred 12598 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) ∈ ℝ)
36 xnn0xr 12480 . . . . . . . . 9 (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0* → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*)
3726, 27, 363syl 18 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*)
38 eqid 2729 . . . . . . . . . . . . 13 (Base‘(ℂflds (lastS‘𝑣))) = (Base‘(ℂflds (lastS‘𝑣)))
39 constrextdg2.1 . . . . . . . . . . . . . . . 16 𝐸 = (ℂflds 𝑒)
40 constrextdg2.2 . . . . . . . . . . . . . . . 16 𝐹 = (ℂflds 𝑓)
41 constrextdg2.l . . . . . . . . . . . . . . . 16 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
42 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
43 simprl 770 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (𝑣‘0) = ℚ)
4443oveq2d 7369 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (𝑣‘0)) = (ℂflds ℚ))
45 eqidd 2730 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣)) = (ℂflds (lastS‘𝑣)))
46 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → 𝑣 = ∅)
4746fveq1d 6828 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = (∅‘0))
48 0fv 6868 . . . . . . . . . . . . . . . . . . . . 21 (∅‘0) = ∅
4948a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (∅‘0) = ∅)
5047, 49eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = ∅)
5143adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = ℚ)
52 1nn 12157 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ
53 nnq 12881 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ ℕ → 1 ∈ ℚ)
5452, 53ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℚ
5554ne0ii 4297 . . . . . . . . . . . . . . . . . . . . . 22 ℚ ≠ ∅
5655a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → ℚ ≠ ∅)
5751, 56eqnetrd 2992 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) ≠ ∅)
5857neneqd 2930 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → ¬ (𝑣‘0) = ∅)
5950, 58pm2.65da 816 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ¬ 𝑣 = ∅)
6059neqned 2932 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ≠ ∅)
6142, 60hashne0 32768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 0 < (♯‘𝑣))
6239, 40, 41, 42, 10, 44, 45, 61fldext2chn 33694 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ) ∧ ∃𝑝 ∈ ℕ0 ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)))
6362simpld 494 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ))
64 fldextfld1 33619 . . . . . . . . . . . . . 14 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ) → (ℂflds (lastS‘𝑣)) ∈ Field)
6563, 64syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣)) ∈ Field)
6642chnwrd 32962 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ∈ Word (SubDRing‘ℂfld))
67 lswcl 14493 . . . . . . . . . . . . . . 15 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ 𝑣 ≠ ∅) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
6866, 60, 67syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
6911a1i 11 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℂfld ∈ DivRing)
70 qsscn 12879 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ ℂ
7170a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ℚ ⊆ ℂ)
7271, 23unssd 4145 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → (ℚ ∪ {𝐴}) ⊆ ℂ)
7372ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℚ ∪ {𝐴}) ⊆ ℂ)
746, 69, 73fldgensdrg 33263 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld))
757qrngbas 27546 . . . . . . . . . . . . . . . . . . 19 ℚ = (Base‘(ℂflds ℚ))
7675, 63fldextsdrg 33626 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
7738sdrgss 20696 . . . . . . . . . . . . . . . . . 18 (ℚ ∈ (SubDRing‘(ℂflds (lastS‘𝑣))) → ℚ ⊆ (Base‘(ℂflds (lastS‘𝑣))))
7876, 77syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ⊆ (Base‘(ℂflds (lastS‘𝑣))))
796sdrgss 20696 . . . . . . . . . . . . . . . . . . 19 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ⊆ ℂ)
8068, 79syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ⊆ ℂ)
81 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (ℂflds (lastS‘𝑣)) = (ℂflds (lastS‘𝑣))
8281, 6ressbas2 17167 . . . . . . . . . . . . . . . . . 18 ((lastS‘𝑣) ⊆ ℂ → (lastS‘𝑣) = (Base‘(ℂflds (lastS‘𝑣))))
8380, 82syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) = (Base‘(ℂflds (lastS‘𝑣))))
8478, 83sseqtrrd 3975 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ⊆ (lastS‘𝑣))
85 simprr 772 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (𝐶𝑚) ⊆ (lastS‘𝑣))
86 simpllr 775 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝐴 ∈ (𝐶𝑚))
8785, 86sseldd 3938 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝐴 ∈ (lastS‘𝑣))
8887snssd 4763 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → {𝐴} ⊆ (lastS‘𝑣))
8984, 88unssd 4145 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℚ ∪ {𝐴}) ⊆ (lastS‘𝑣))
906, 69, 68, 89fldgenssp 33267 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))
91 id 22 . . . . . . . . . . . . . . . 16 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9281, 91subsdrg 33247 . . . . . . . . . . . . . . 15 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))) ↔ ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld) ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))))
9392biimpar 477 . . . . . . . . . . . . . 14 (((lastS‘𝑣) ∈ (SubDRing‘ℂfld) ∧ ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld) ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
9468, 74, 90, 93syl12anc 836 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
9538, 65, 94sdrgfldext 33622 . . . . . . . . . . . 12 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))))
9668elexd 3462 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ∈ V)
97 ressabs 17177 . . . . . . . . . . . . 13 (((lastS‘𝑣) ∈ V ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣)) → ((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
9896, 90, 97syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
9995, 98breqtrd 5121 . . . . . . . . . . 11 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
10099ad2antrr 726 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
101 extdgcl 33628 . . . . . . . . . 10 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0*)
102100, 101syl 17 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0*)
103 xnn0xr 12480 . . . . . . . . 9 (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0* → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ*)
104102, 103syl 17 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ*)
105 extdggt0 33629 . . . . . . . . 9 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) → 0 < ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))))
106100, 105syl 17 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 0 < ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))))
107 extdgmul 33635 . . . . . . . . . . 11 (((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) ∧ (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
10899, 25, 107syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
109108ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
110 xmulcom 13186 . . . . . . . . . 10 ((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ* ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
111104, 37, 110syl2anc 584 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
112109, 111eqtrd 2764 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
11335, 37, 104, 106, 112rexmul2 32710 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ)
114 extdggt0 33629 . . . . . . . 8 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ) → 0 < ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)))
11526, 114syl 17 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 0 < ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)))
11628, 113, 115xnn0nnd 32729 . . . . . 6 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ)
1175, 116eqeltrid 2832 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (𝐿[:]𝑄) ∈ ℕ)
11835, 104, 37, 115, 109rexmul2 32710 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ)
119102, 118xnn0nn0d 32728 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0)
120119nn0zd 12515 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℤ)
121116nnnn0d 12463 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0)
122121nn0zd 12515 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℤ)
123 rexmul 13191 . . . . . . . . . . 11 ((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
124118, 113, 123syl2anc 584 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
125109, 124eqtrd 2764 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
126125eqcomd 2735 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)))
127126, 29eqtrd 2764 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (2↑𝑝))
128 dvds0lem 16195 . . . . . . 7 (((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℤ ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℤ ∧ (2↑𝑝) ∈ ℤ) ∧ (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∥ (2↑𝑝))
129120, 122, 33, 127, 128syl31anc 1375 . . . . . 6 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∥ (2↑𝑝))
1305, 129eqbrtrid 5130 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (𝐿[:]𝑄) ∥ (2↑𝑝))
131 dvdsprmpweq 16814 . . . . . 6 ((2 ∈ ℙ ∧ (𝐿[:]𝑄) ∈ ℕ ∧ 𝑝 ∈ ℕ0) → ((𝐿[:]𝑄) ∥ (2↑𝑝) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)))
132131imp 406 . . . . 5 (((2 ∈ ℙ ∧ (𝐿[:]𝑄) ∈ ℕ ∧ 𝑝 ∈ ℕ0) ∧ (𝐿[:]𝑄) ∥ (2↑𝑝)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
1332, 117, 32, 130, 132syl31anc 1375 . . . 4 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
13462simprd 495 . . . 4 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ∃𝑝 ∈ ℕ0 ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝))
135133, 134r19.29a 3137 . . 3 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
136 simplr 768 . . . 4 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → 𝑚 ∈ ω)
13718, 39, 40, 41, 136constrextdg2 33715 . . 3 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)))
138135, 137r19.29a 3137 . 2 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
139 constrext2chnlem.a . . 3 (𝜑𝐴 ∈ Constr)
14018isconstr 33702 . . 3 (𝐴 ∈ Constr ↔ ∃𝑚 ∈ ω 𝐴 ∈ (𝐶𝑚))
141139, 140sylib 218 . 2 (𝜑 → ∃𝑚 ∈ ω 𝐴 ∈ (𝐶𝑚))
142138, 141r19.29a 3137 1 (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3396  Vcvv 3438  cun 3903  wss 3905  c0 4286  {csn 4579  {cpr 4581   class class class wbr 5095  {copab 5157  cmpt 5176  Oncon0 6311  cfv 6486  (class class class)co 7353  ωcom 7806  reccrdg 8338  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  *cxr 11167   < clt 11168  cmin 11365  cn 12146  2c2 12201  0cn0 12402  0*cxnn0 12475  cz 12489  cq 12867   ·e cxmu 13031  cexp 13986  Word cword 14438  lastSclsw 14487  ccj 15021  cim 15023  abscabs 15159  cdvds 16181  cprime 16600  Basecbs 17138  s cress 17159  SubRingcsubrg 20472  DivRingcdr 20632  Fieldcfield 20633  SubDRingcsdrg 20689  fldccnfld 21279  Chaincchn 32959   fldGen cfldgen 33259  /FldExtcfldext 33610  [:]cextdg 33612  Constrcconstr 33695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-inf 9352  df-oi 9421  df-r1 9679  df-rank 9680  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xmul 13034  df-ico 13272  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-prm 16601  df-pc 16767  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ocomp 17200  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-imas 17430  df-qus 17431  df-mre 17506  df-mrc 17507  df-mri 17508  df-acs 17509  df-proset 18218  df-drs 18219  df-poset 18237  df-ipo 18452  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-nsg 19021  df-eqg 19022  df-ghm 19110  df-gim 19156  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-srg 20090  df-ring 20138  df-cring 20139  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-irred 20262  df-invr 20291  df-dvr 20304  df-rhm 20375  df-nzr 20416  df-subrng 20449  df-subrg 20473  df-rlreg 20597  df-domn 20598  df-idom 20599  df-drng 20634  df-field 20635  df-sdrg 20690  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lmhm 20944  df-lmim 20945  df-lmic 20946  df-lbs 20997  df-lvec 21025  df-sra 21095  df-rgmod 21096  df-lidl 21133  df-rsp 21134  df-2idl 21175  df-lpidl 21247  df-lpir 21248  df-pid 21262  df-cnfld 21280  df-dsmm 21657  df-frlm 21672  df-uvc 21708  df-lindf 21731  df-linds 21732  df-assa 21778  df-asp 21779  df-ascl 21780  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-evls 21997  df-evl 21998  df-psr1 22080  df-vr1 22081  df-ply1 22082  df-coe1 22083  df-evls1 22218  df-evl1 22219  df-mdeg 25976  df-deg1 25977  df-mon1 26052  df-uc1p 26053  df-q1p 26054  df-r1p 26055  df-ig1p 26056  df-chn 32960  df-fldgen 33260  df-mxidl 33407  df-dim 33571  df-fldext 33613  df-extdg 33614  df-irng 33655  df-minply 33666  df-constr 33696
This theorem is referenced by:  constrext2chn  33725
  Copyright terms: Public domain W3C validator