Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrext2chnlem Structured version   Visualization version   GIF version

Theorem constrext2chnlem 33748
Description: Lemma for constrext2chn 33757. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrextdg2.1 𝐸 = (ℂflds 𝑒)
constrextdg2.2 𝐹 = (ℂflds 𝑓)
constrextdg2.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
constrextdg2.n (𝜑𝑁 ∈ ω)
constrext2chnlem.q 𝑄 = (ℂflds ℚ)
constrext2chnlem.l 𝐿 = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
constrext2chnlem.a (𝜑𝐴 ∈ Constr)
Assertion
Ref Expression
constrext2chnlem (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Distinct variable groups:   < ,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑛,𝑟,𝑠,𝑡,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑛,𝑟,𝑠,𝑡,𝑥   𝑡,𝑁   𝐴,𝑛   𝑛,𝐿   𝑄,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐴(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑄(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑥,𝑡,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑥,𝑡,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐿(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑁(𝑥,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrext2chnlem
Dummy variables 𝑣 𝑚 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2prm 16668 . . . . . 6 2 ∈ ℙ
21a1i 11 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 2 ∈ ℙ)
3 constrext2chnlem.l . . . . . . 7 𝐿 = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
4 constrext2chnlem.q . . . . . . 7 𝑄 = (ℂflds ℚ)
53, 4oveq12i 7406 . . . . . 6 (𝐿[:]𝑄) = ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))
6 cnfldbas 21274 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
7 eqid 2730 . . . . . . . . . 10 (ℂflds ℚ) = (ℂflds ℚ)
8 eqid 2730 . . . . . . . . . 10 (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
9 cnfldfld 33322 . . . . . . . . . . 11 fld ∈ Field
109a1i 11 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℂfld ∈ Field)
11 cndrng 21316 . . . . . . . . . . . 12 fld ∈ DivRing
12 qsubdrg 21342 . . . . . . . . . . . . 13 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1312simpli 483 . . . . . . . . . . . 12 ℚ ∈ (SubRing‘ℂfld)
1412simpri 485 . . . . . . . . . . . 12 (ℂflds ℚ) ∈ DivRing
15 issdrg 20703 . . . . . . . . . . . 12 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
1611, 13, 14, 15mpbir3an 1342 . . . . . . . . . . 11 ℚ ∈ (SubDRing‘ℂfld)
1716a1i 11 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ∈ (SubDRing‘ℂfld))
18 constr0.1 . . . . . . . . . . . . . 14 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
19 nnon 7856 . . . . . . . . . . . . . . 15 (𝑚 ∈ ω → 𝑚 ∈ On)
2019adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ω) → 𝑚 ∈ On)
2118, 20constrsscn 33738 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ω) → (𝐶𝑚) ⊆ ℂ)
2221sselda 3954 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → 𝐴 ∈ ℂ)
2322snssd 4781 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → {𝐴} ⊆ ℂ)
2423ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → {𝐴} ⊆ ℂ)
256, 7, 8, 10, 17, 24fldgenfldext 33671 . . . . . . . . 9 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ))
2625ad2antrr 726 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ))
27 extdgcl 33660 . . . . . . . 8 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0*)
2826, 27syl 17 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0*)
29 simpr 484 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝))
30 2z 12581 . . . . . . . . . . . 12 2 ∈ ℤ
3130a1i 11 . . . . . . . . . . 11 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 2 ∈ ℤ)
32 simplr 768 . . . . . . . . . . 11 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 𝑝 ∈ ℕ0)
3331, 32zexpcld 14062 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (2↑𝑝) ∈ ℤ)
3429, 33eqeltrd 2829 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) ∈ ℤ)
3534zred 12654 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) ∈ ℝ)
36 xnn0xr 12536 . . . . . . . . 9 (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0* → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*)
3726, 27, 363syl 18 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*)
38 eqid 2730 . . . . . . . . . . . . 13 (Base‘(ℂflds (lastS‘𝑣))) = (Base‘(ℂflds (lastS‘𝑣)))
39 constrextdg2.1 . . . . . . . . . . . . . . . 16 𝐸 = (ℂflds 𝑒)
40 constrextdg2.2 . . . . . . . . . . . . . . . 16 𝐹 = (ℂflds 𝑓)
41 constrextdg2.l . . . . . . . . . . . . . . . 16 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
42 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
43 simprl 770 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (𝑣‘0) = ℚ)
4443oveq2d 7410 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (𝑣‘0)) = (ℂflds ℚ))
45 eqidd 2731 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣)) = (ℂflds (lastS‘𝑣)))
46 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → 𝑣 = ∅)
4746fveq1d 6867 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = (∅‘0))
48 0fv 6909 . . . . . . . . . . . . . . . . . . . . 21 (∅‘0) = ∅
4948a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (∅‘0) = ∅)
5047, 49eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = ∅)
5143adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = ℚ)
52 1nn 12208 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ
53 nnq 12935 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ ℕ → 1 ∈ ℚ)
5452, 53ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℚ
5554ne0ii 4315 . . . . . . . . . . . . . . . . . . . . . 22 ℚ ≠ ∅
5655a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → ℚ ≠ ∅)
5751, 56eqnetrd 2994 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) ≠ ∅)
5857neneqd 2932 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → ¬ (𝑣‘0) = ∅)
5950, 58pm2.65da 816 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ¬ 𝑣 = ∅)
6059neqned 2934 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ≠ ∅)
6142, 60hashne0 32743 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 0 < (♯‘𝑣))
6239, 40, 41, 42, 10, 44, 45, 61fldext2chn 33726 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ) ∧ ∃𝑝 ∈ ℕ0 ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)))
6362simpld 494 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ))
64 fldextfld1 33651 . . . . . . . . . . . . . 14 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ) → (ℂflds (lastS‘𝑣)) ∈ Field)
6563, 64syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣)) ∈ Field)
6642chnwrd 32941 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ∈ Word (SubDRing‘ℂfld))
67 lswcl 14543 . . . . . . . . . . . . . . 15 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ 𝑣 ≠ ∅) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
6866, 60, 67syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
6911a1i 11 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℂfld ∈ DivRing)
70 qsscn 12933 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ ℂ
7170a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ℚ ⊆ ℂ)
7271, 23unssd 4163 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → (ℚ ∪ {𝐴}) ⊆ ℂ)
7372ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℚ ∪ {𝐴}) ⊆ ℂ)
746, 69, 73fldgensdrg 33272 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld))
757qrngbas 27537 . . . . . . . . . . . . . . . . . . 19 ℚ = (Base‘(ℂflds ℚ))
7675, 63fldextsdrg 33658 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
7738sdrgss 20708 . . . . . . . . . . . . . . . . . 18 (ℚ ∈ (SubDRing‘(ℂflds (lastS‘𝑣))) → ℚ ⊆ (Base‘(ℂflds (lastS‘𝑣))))
7876, 77syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ⊆ (Base‘(ℂflds (lastS‘𝑣))))
796sdrgss 20708 . . . . . . . . . . . . . . . . . . 19 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ⊆ ℂ)
8068, 79syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ⊆ ℂ)
81 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (ℂflds (lastS‘𝑣)) = (ℂflds (lastS‘𝑣))
8281, 6ressbas2 17214 . . . . . . . . . . . . . . . . . 18 ((lastS‘𝑣) ⊆ ℂ → (lastS‘𝑣) = (Base‘(ℂflds (lastS‘𝑣))))
8380, 82syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) = (Base‘(ℂflds (lastS‘𝑣))))
8478, 83sseqtrrd 3992 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ⊆ (lastS‘𝑣))
85 simprr 772 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (𝐶𝑚) ⊆ (lastS‘𝑣))
86 simpllr 775 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝐴 ∈ (𝐶𝑚))
8785, 86sseldd 3955 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝐴 ∈ (lastS‘𝑣))
8887snssd 4781 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → {𝐴} ⊆ (lastS‘𝑣))
8984, 88unssd 4163 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℚ ∪ {𝐴}) ⊆ (lastS‘𝑣))
906, 69, 68, 89fldgenssp 33276 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))
91 id 22 . . . . . . . . . . . . . . . 16 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9281, 91subsdrg 33256 . . . . . . . . . . . . . . 15 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))) ↔ ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld) ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))))
9392biimpar 477 . . . . . . . . . . . . . 14 (((lastS‘𝑣) ∈ (SubDRing‘ℂfld) ∧ ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld) ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
9468, 74, 90, 93syl12anc 836 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
9538, 65, 94sdrgfldext 33654 . . . . . . . . . . . 12 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))))
9668elexd 3479 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ∈ V)
97 ressabs 17224 . . . . . . . . . . . . 13 (((lastS‘𝑣) ∈ V ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣)) → ((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
9896, 90, 97syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
9995, 98breqtrd 5141 . . . . . . . . . . 11 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
10099ad2antrr 726 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
101 extdgcl 33660 . . . . . . . . . 10 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0*)
102100, 101syl 17 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0*)
103 xnn0xr 12536 . . . . . . . . 9 (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0* → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ*)
104102, 103syl 17 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ*)
105 extdggt0 33661 . . . . . . . . 9 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) → 0 < ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))))
106100, 105syl 17 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 0 < ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))))
107 extdgmul 33667 . . . . . . . . . . 11 (((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) ∧ (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
10899, 25, 107syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
109108ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
110 xmulcom 13239 . . . . . . . . . 10 ((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ* ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
111104, 37, 110syl2anc 584 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
112109, 111eqtrd 2765 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
11335, 37, 104, 106, 112rexmul2 32685 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ)
114 extdggt0 33661 . . . . . . . 8 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ) → 0 < ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)))
11526, 114syl 17 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 0 < ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)))
11628, 113, 115xnn0nnd 32704 . . . . . 6 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ)
1175, 116eqeltrid 2833 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (𝐿[:]𝑄) ∈ ℕ)
11835, 104, 37, 115, 109rexmul2 32685 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ)
119102, 118xnn0nn0d 32703 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0)
120119nn0zd 12571 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℤ)
121116nnnn0d 12519 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0)
122121nn0zd 12571 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℤ)
123 rexmul 13244 . . . . . . . . . . 11 ((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
124118, 113, 123syl2anc 584 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
125109, 124eqtrd 2765 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
126125eqcomd 2736 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)))
127126, 29eqtrd 2765 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (2↑𝑝))
128 dvds0lem 16243 . . . . . . 7 (((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℤ ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℤ ∧ (2↑𝑝) ∈ ℤ) ∧ (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∥ (2↑𝑝))
129120, 122, 33, 127, 128syl31anc 1375 . . . . . 6 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∥ (2↑𝑝))
1305, 129eqbrtrid 5150 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (𝐿[:]𝑄) ∥ (2↑𝑝))
131 dvdsprmpweq 16861 . . . . . 6 ((2 ∈ ℙ ∧ (𝐿[:]𝑄) ∈ ℕ ∧ 𝑝 ∈ ℕ0) → ((𝐿[:]𝑄) ∥ (2↑𝑝) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)))
132131imp 406 . . . . 5 (((2 ∈ ℙ ∧ (𝐿[:]𝑄) ∈ ℕ ∧ 𝑝 ∈ ℕ0) ∧ (𝐿[:]𝑄) ∥ (2↑𝑝)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
1332, 117, 32, 130, 132syl31anc 1375 . . . 4 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
13462simprd 495 . . . 4 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ∃𝑝 ∈ ℕ0 ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝))
135133, 134r19.29a 3143 . . 3 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
136 simplr 768 . . . 4 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → 𝑚 ∈ ω)
13718, 39, 40, 41, 136constrextdg2 33747 . . 3 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)))
138135, 137r19.29a 3143 . 2 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
139 constrext2chnlem.a . . 3 (𝜑𝐴 ∈ Constr)
14018isconstr 33734 . . 3 (𝐴 ∈ Constr ↔ ∃𝑚 ∈ ω 𝐴 ∈ (𝐶𝑚))
141139, 140sylib 218 . 2 (𝜑 → ∃𝑚 ∈ ω 𝐴 ∈ (𝐶𝑚))
142138, 141r19.29a 3143 1 (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2927  wrex 3055  {crab 3411  Vcvv 3455  cun 3920  wss 3922  c0 4304  {csn 4597  {cpr 4599   class class class wbr 5115  {copab 5177  cmpt 5196  Oncon0 6340  cfv 6519  (class class class)co 7394  ωcom 7850  reccrdg 8386  cc 11084  cr 11085  0cc0 11086  1c1 11087   + caddc 11089   · cmul 11091  *cxr 11225   < clt 11226  cmin 11423  cn 12197  2c2 12252  0cn0 12458  0*cxnn0 12531  cz 12545  cq 12921   ·e cxmu 13084  cexp 14036  Word cword 14488  lastSclsw 14537  ccj 15072  cim 15074  abscabs 15210  cdvds 16229  cprime 16647  Basecbs 17185  s cress 17206  SubRingcsubrg 20484  DivRingcdr 20644  Fieldcfield 20645  SubDRingcsdrg 20701  fldccnfld 21270  Chaincchn 32938   fldGen cfldgen 33268  /FldExtcfldext 33642  [:]cextdg 33644  Constrcconstr 33727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-reg 9563  ax-inf2 9612  ax-ac2 10434  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164  ax-addf 11165  ax-mulf 11166
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-ofr 7661  df-rpss 7706  df-om 7851  df-1st 7977  df-2nd 7978  df-supp 8149  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-oadd 8447  df-er 8682  df-ec 8684  df-qs 8688  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9331  df-sup 9411  df-inf 9412  df-oi 9481  df-r1 9735  df-rank 9736  df-dju 9872  df-card 9910  df-acn 9913  df-ac 10087  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-xnn0 12532  df-z 12546  df-dec 12666  df-uz 12810  df-q 12922  df-rp 12966  df-xneg 13085  df-xmul 13087  df-ico 13325  df-fz 13482  df-fzo 13629  df-fl 13766  df-mod 13844  df-seq 13977  df-exp 14037  df-hash 14306  df-word 14489  df-lsw 14538  df-concat 14546  df-s1 14571  df-substr 14616  df-pfx 14646  df-cj 15075  df-re 15076  df-im 15077  df-sqrt 15211  df-abs 15212  df-dvds 16230  df-gcd 16471  df-prm 16648  df-pc 16814  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ocomp 17247  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-0g 17410  df-gsum 17411  df-prds 17416  df-pws 17418  df-imas 17477  df-qus 17478  df-mre 17553  df-mrc 17554  df-mri 17555  df-acs 17556  df-proset 18261  df-drs 18262  df-poset 18280  df-ipo 18493  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-nsg 19062  df-eqg 19063  df-ghm 19151  df-gim 19197  df-cntz 19255  df-oppg 19284  df-lsm 19572  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-srg 20102  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-irred 20274  df-invr 20303  df-dvr 20316  df-rhm 20387  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-sdrg 20702  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lmhm 20935  df-lmim 20936  df-lmic 20937  df-lbs 20988  df-lvec 21016  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-rsp 21125  df-2idl 21166  df-lpidl 21238  df-lpir 21239  df-pid 21253  df-cnfld 21271  df-dsmm 21647  df-frlm 21662  df-uvc 21698  df-lindf 21721  df-linds 21722  df-assa 21768  df-asp 21769  df-ascl 21770  df-psr 21824  df-mvr 21825  df-mpl 21826  df-opsr 21828  df-evls 21987  df-evl 21988  df-psr1 22070  df-vr1 22071  df-ply1 22072  df-coe1 22073  df-evls1 22208  df-evl1 22209  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-ig1p 26047  df-chn 32939  df-fldgen 33269  df-mxidl 33439  df-dim 33603  df-fldext 33645  df-extdg 33646  df-irng 33687  df-minply 33698  df-constr 33728
This theorem is referenced by:  constrext2chn  33757
  Copyright terms: Public domain W3C validator