Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrext2chnlem Structured version   Visualization version   GIF version

Theorem constrext2chnlem 33719
Description: Lemma for constrext2chn 33728. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrextdg2.1 𝐸 = (ℂflds 𝑒)
constrextdg2.2 𝐹 = (ℂflds 𝑓)
constrextdg2.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
constrextdg2.n (𝜑𝑁 ∈ ω)
constrext2chnlem.q 𝑄 = (ℂflds ℚ)
constrext2chnlem.l 𝐿 = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
constrext2chnlem.a (𝜑𝐴 ∈ Constr)
Assertion
Ref Expression
constrext2chnlem (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Distinct variable groups:   < ,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑛,𝑟,𝑠,𝑡,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑛,𝑟,𝑠,𝑡,𝑥   𝑡,𝑁   𝐴,𝑛   𝑛,𝐿   𝑄,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐴(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑄(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑥,𝑡,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑥,𝑡,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐿(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑁(𝑥,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrext2chnlem
Dummy variables 𝑣 𝑚 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2prm 16698 . . . . . 6 2 ∈ ℙ
21a1i 11 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 2 ∈ ℙ)
3 constrext2chnlem.l . . . . . . 7 𝐿 = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
4 constrext2chnlem.q . . . . . . 7 𝑄 = (ℂflds ℚ)
53, 4oveq12i 7412 . . . . . 6 (𝐿[:]𝑄) = ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))
6 cnfldbas 21306 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
7 eqid 2734 . . . . . . . . . 10 (ℂflds ℚ) = (ℂflds ℚ)
8 eqid 2734 . . . . . . . . . 10 (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
9 cnfldfld 33295 . . . . . . . . . . 11 fld ∈ Field
109a1i 11 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℂfld ∈ Field)
11 cndrng 21348 . . . . . . . . . . . 12 fld ∈ DivRing
12 qsubdrg 21374 . . . . . . . . . . . . 13 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1312simpli 483 . . . . . . . . . . . 12 ℚ ∈ (SubRing‘ℂfld)
1412simpri 485 . . . . . . . . . . . 12 (ℂflds ℚ) ∈ DivRing
15 issdrg 20735 . . . . . . . . . . . 12 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
1611, 13, 14, 15mpbir3an 1341 . . . . . . . . . . 11 ℚ ∈ (SubDRing‘ℂfld)
1716a1i 11 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ∈ (SubDRing‘ℂfld))
18 constr0.1 . . . . . . . . . . . . . 14 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
19 nnon 7862 . . . . . . . . . . . . . . 15 (𝑚 ∈ ω → 𝑚 ∈ On)
2019adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ω) → 𝑚 ∈ On)
2118, 20constrsscn 33709 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ω) → (𝐶𝑚) ⊆ ℂ)
2221sselda 3956 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → 𝐴 ∈ ℂ)
2322snssd 4783 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → {𝐴} ⊆ ℂ)
2423ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → {𝐴} ⊆ ℂ)
256, 7, 8, 10, 17, 24fldgenfldext 33644 . . . . . . . . 9 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ))
2625ad2antrr 726 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ))
27 extdgcl 33633 . . . . . . . 8 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0*)
2826, 27syl 17 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0*)
29 simpr 484 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝))
30 2z 12617 . . . . . . . . . . . 12 2 ∈ ℤ
3130a1i 11 . . . . . . . . . . 11 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 2 ∈ ℤ)
32 simplr 768 . . . . . . . . . . 11 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 𝑝 ∈ ℕ0)
3331, 32zexpcld 14095 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (2↑𝑝) ∈ ℤ)
3429, 33eqeltrd 2833 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) ∈ ℤ)
3534zred 12690 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) ∈ ℝ)
36 xnn0xr 12572 . . . . . . . . 9 (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0* → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*)
3726, 27, 363syl 18 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*)
38 eqid 2734 . . . . . . . . . . . . 13 (Base‘(ℂflds (lastS‘𝑣))) = (Base‘(ℂflds (lastS‘𝑣)))
39 constrextdg2.1 . . . . . . . . . . . . . . . 16 𝐸 = (ℂflds 𝑒)
40 constrextdg2.2 . . . . . . . . . . . . . . . 16 𝐹 = (ℂflds 𝑓)
41 constrextdg2.l . . . . . . . . . . . . . . . 16 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
42 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
43 simprl 770 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (𝑣‘0) = ℚ)
4443oveq2d 7416 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (𝑣‘0)) = (ℂflds ℚ))
45 eqidd 2735 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣)) = (ℂflds (lastS‘𝑣)))
46 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → 𝑣 = ∅)
4746fveq1d 6875 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = (∅‘0))
48 0fv 6917 . . . . . . . . . . . . . . . . . . . . 21 (∅‘0) = ∅
4948a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (∅‘0) = ∅)
5047, 49eqtrd 2769 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = ∅)
5143adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = ℚ)
52 1nn 12244 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ
53 nnq 12971 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ ℕ → 1 ∈ ℚ)
5452, 53ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℚ
5554ne0ii 4317 . . . . . . . . . . . . . . . . . . . . . 22 ℚ ≠ ∅
5655a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → ℚ ≠ ∅)
5751, 56eqnetrd 2998 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) ≠ ∅)
5857neneqd 2936 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → ¬ (𝑣‘0) = ∅)
5950, 58pm2.65da 816 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ¬ 𝑣 = ∅)
6059neqned 2938 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ≠ ∅)
6142, 60hashne0 32726 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 0 < (♯‘𝑣))
6239, 40, 41, 42, 10, 44, 45, 61fldext2chn 33697 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ) ∧ ∃𝑝 ∈ ℕ0 ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)))
6362simpld 494 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ))
64 fldextfld1 33624 . . . . . . . . . . . . . 14 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ) → (ℂflds (lastS‘𝑣)) ∈ Field)
6563, 64syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣)) ∈ Field)
6642chnwrd 32925 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ∈ Word (SubDRing‘ℂfld))
67 lswcl 14575 . . . . . . . . . . . . . . 15 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ 𝑣 ≠ ∅) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
6866, 60, 67syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
6911a1i 11 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℂfld ∈ DivRing)
70 qsscn 12969 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ ℂ
7170a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ℚ ⊆ ℂ)
7271, 23unssd 4165 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → (ℚ ∪ {𝐴}) ⊆ ℂ)
7372ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℚ ∪ {𝐴}) ⊆ ℂ)
746, 69, 73fldgensdrg 33245 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld))
757qrngbas 27568 . . . . . . . . . . . . . . . . . . 19 ℚ = (Base‘(ℂflds ℚ))
7675, 63fldextsdrg 33631 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
7738sdrgss 20740 . . . . . . . . . . . . . . . . . 18 (ℚ ∈ (SubDRing‘(ℂflds (lastS‘𝑣))) → ℚ ⊆ (Base‘(ℂflds (lastS‘𝑣))))
7876, 77syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ⊆ (Base‘(ℂflds (lastS‘𝑣))))
796sdrgss 20740 . . . . . . . . . . . . . . . . . . 19 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ⊆ ℂ)
8068, 79syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ⊆ ℂ)
81 eqid 2734 . . . . . . . . . . . . . . . . . . 19 (ℂflds (lastS‘𝑣)) = (ℂflds (lastS‘𝑣))
8281, 6ressbas2 17246 . . . . . . . . . . . . . . . . . 18 ((lastS‘𝑣) ⊆ ℂ → (lastS‘𝑣) = (Base‘(ℂflds (lastS‘𝑣))))
8380, 82syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) = (Base‘(ℂflds (lastS‘𝑣))))
8478, 83sseqtrrd 3994 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ⊆ (lastS‘𝑣))
85 simprr 772 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (𝐶𝑚) ⊆ (lastS‘𝑣))
86 simpllr 775 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝐴 ∈ (𝐶𝑚))
8785, 86sseldd 3957 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝐴 ∈ (lastS‘𝑣))
8887snssd 4783 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → {𝐴} ⊆ (lastS‘𝑣))
8984, 88unssd 4165 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℚ ∪ {𝐴}) ⊆ (lastS‘𝑣))
906, 69, 68, 89fldgenssp 33249 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))
91 id 22 . . . . . . . . . . . . . . . 16 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9281, 91subsdrg 33229 . . . . . . . . . . . . . . 15 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))) ↔ ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld) ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))))
9392biimpar 477 . . . . . . . . . . . . . 14 (((lastS‘𝑣) ∈ (SubDRing‘ℂfld) ∧ ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld) ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
9468, 74, 90, 93syl12anc 836 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
9538, 65, 94sdrgfldext 33627 . . . . . . . . . . . 12 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))))
9668elexd 3481 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ∈ V)
97 ressabs 17256 . . . . . . . . . . . . 13 (((lastS‘𝑣) ∈ V ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣)) → ((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
9896, 90, 97syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
9995, 98breqtrd 5143 . . . . . . . . . . 11 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
10099ad2antrr 726 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
101 extdgcl 33633 . . . . . . . . . 10 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0*)
102100, 101syl 17 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0*)
103 xnn0xr 12572 . . . . . . . . 9 (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0* → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ*)
104102, 103syl 17 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ*)
105 extdggt0 33634 . . . . . . . . 9 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) → 0 < ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))))
106100, 105syl 17 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 0 < ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))))
107 extdgmul 33640 . . . . . . . . . . 11 (((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) ∧ (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
10899, 25, 107syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
109108ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
110 xmulcom 13275 . . . . . . . . . 10 ((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ* ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
111104, 37, 110syl2anc 584 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
112109, 111eqtrd 2769 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
11335, 37, 104, 106, 112rexmul2 32667 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ)
114 extdggt0 33634 . . . . . . . 8 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ) → 0 < ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)))
11526, 114syl 17 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 0 < ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)))
11628, 113, 115xnn0nnd 32687 . . . . . 6 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ)
1175, 116eqeltrid 2837 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (𝐿[:]𝑄) ∈ ℕ)
11835, 104, 37, 115, 109rexmul2 32667 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ)
119102, 118xnn0nn0d 32686 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0)
120119nn0zd 12607 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℤ)
121116nnnn0d 12555 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0)
122121nn0zd 12607 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℤ)
123 rexmul 13280 . . . . . . . . . . 11 ((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
124118, 113, 123syl2anc 584 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
125109, 124eqtrd 2769 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
126125eqcomd 2740 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)))
127126, 29eqtrd 2769 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (2↑𝑝))
128 dvds0lem 16273 . . . . . . 7 (((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℤ ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℤ ∧ (2↑𝑝) ∈ ℤ) ∧ (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∥ (2↑𝑝))
129120, 122, 33, 127, 128syl31anc 1374 . . . . . 6 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∥ (2↑𝑝))
1305, 129eqbrtrid 5152 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (𝐿[:]𝑄) ∥ (2↑𝑝))
131 dvdsprmpweq 16891 . . . . . 6 ((2 ∈ ℙ ∧ (𝐿[:]𝑄) ∈ ℕ ∧ 𝑝 ∈ ℕ0) → ((𝐿[:]𝑄) ∥ (2↑𝑝) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)))
132131imp 406 . . . . 5 (((2 ∈ ℙ ∧ (𝐿[:]𝑄) ∈ ℕ ∧ 𝑝 ∈ ℕ0) ∧ (𝐿[:]𝑄) ∥ (2↑𝑝)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
1332, 117, 32, 130, 132syl31anc 1374 . . . 4 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
13462simprd 495 . . . 4 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ∃𝑝 ∈ ℕ0 ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝))
135133, 134r19.29a 3146 . . 3 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
136 simplr 768 . . . 4 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → 𝑚 ∈ ω)
13718, 39, 40, 41, 136constrextdg2 33718 . . 3 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)))
138135, 137r19.29a 3146 . 2 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
139 constrext2chnlem.a . . 3 (𝜑𝐴 ∈ Constr)
14018isconstr 33705 . . 3 (𝐴 ∈ Constr ↔ ∃𝑚 ∈ ω 𝐴 ∈ (𝐶𝑚))
141139, 140sylib 218 . 2 (𝜑 → ∃𝑚 ∈ ω 𝐴 ∈ (𝐶𝑚))
142138, 141r19.29a 3146 1 (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3413  Vcvv 3457  cun 3922  wss 3924  c0 4306  {csn 4599  {cpr 4601   class class class wbr 5117  {copab 5179  cmpt 5199  Oncon0 6350  cfv 6528  (class class class)co 7400  ωcom 7856  reccrdg 8418  cc 11120  cr 11121  0cc0 11122  1c1 11123   + caddc 11125   · cmul 11127  *cxr 11261   < clt 11262  cmin 11459  cn 12233  2c2 12288  0cn0 12494  0*cxnn0 12567  cz 12581  cq 12957   ·e cxmu 13120  cexp 14069  Word cword 14521  lastSclsw 14569  ccj 15104  cim 15106  abscabs 15242  cdvds 16259  cprime 16677  Basecbs 17215  s cress 17238  SubRingcsubrg 20516  DivRingcdr 20676  Fieldcfield 20677  SubDRingcsdrg 20733  fldccnfld 21302  Chaincchn 32922   fldGen cfldgen 33241  /FldExtcfldext 33613  [:]cextdg 33616  Constrcconstr 33698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-reg 9599  ax-inf2 9648  ax-ac2 10470  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200  ax-addf 11201  ax-mulf 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-iin 4968  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-of 7666  df-ofr 7667  df-rpss 7712  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-tpos 8220  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-oadd 8479  df-er 8714  df-ec 8716  df-qs 8720  df-map 8837  df-pm 8838  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fsupp 9369  df-sup 9449  df-inf 9450  df-oi 9517  df-r1 9771  df-rank 9772  df-dju 9908  df-card 9946  df-acn 9949  df-ac 10123  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-xnn0 12568  df-z 12582  df-dec 12702  df-uz 12846  df-q 12958  df-rp 13002  df-xneg 13121  df-xmul 13123  df-ico 13360  df-fz 13515  df-fzo 13662  df-fl 13799  df-mod 13877  df-seq 14010  df-exp 14070  df-hash 14339  df-word 14522  df-lsw 14570  df-concat 14578  df-s1 14603  df-substr 14648  df-pfx 14678  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-dvds 16260  df-gcd 16501  df-prm 16678  df-pc 16844  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ocomp 17279  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-0g 17442  df-gsum 17443  df-prds 17448  df-pws 17450  df-imas 17509  df-qus 17510  df-mre 17585  df-mrc 17586  df-mri 17587  df-acs 17588  df-proset 18293  df-drs 18294  df-poset 18312  df-ipo 18525  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-mhm 18748  df-submnd 18749  df-grp 18906  df-minusg 18907  df-sbg 18908  df-mulg 19038  df-subg 19093  df-nsg 19094  df-eqg 19095  df-ghm 19183  df-gim 19229  df-cntz 19287  df-oppg 19316  df-lsm 19604  df-cmn 19750  df-abl 19751  df-mgp 20088  df-rng 20100  df-ur 20129  df-srg 20134  df-ring 20182  df-cring 20183  df-oppr 20284  df-dvdsr 20304  df-unit 20305  df-irred 20306  df-invr 20335  df-dvr 20348  df-rhm 20419  df-nzr 20460  df-subrng 20493  df-subrg 20517  df-rlreg 20641  df-domn 20642  df-idom 20643  df-drng 20678  df-field 20679  df-sdrg 20734  df-lmod 20806  df-lss 20876  df-lsp 20916  df-lmhm 20967  df-lmim 20968  df-lmic 20969  df-lbs 21020  df-lvec 21048  df-sra 21118  df-rgmod 21119  df-lidl 21156  df-rsp 21157  df-2idl 21198  df-lpidl 21270  df-lpir 21271  df-pid 21285  df-cnfld 21303  df-dsmm 21679  df-frlm 21694  df-uvc 21730  df-lindf 21753  df-linds 21754  df-assa 21800  df-asp 21801  df-ascl 21802  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-evls 22019  df-evl 22020  df-psr1 22102  df-vr1 22103  df-ply1 22104  df-coe1 22105  df-evls1 22240  df-evl1 22241  df-mdeg 25999  df-deg1 26000  df-mon1 26075  df-uc1p 26076  df-q1p 26077  df-r1p 26078  df-ig1p 26079  df-chn 32923  df-fldgen 33242  df-mxidl 33412  df-dim 33574  df-fldext 33617  df-extdg 33618  df-irng 33660  df-minply 33669  df-constr 33699
This theorem is referenced by:  constrext2chn  33728
  Copyright terms: Public domain W3C validator