Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrext2chnlem Structured version   Visualization version   GIF version

Theorem constrext2chnlem 33740
Description: Lemma for constrext2chn 33749. (Contributed by Thierry Arnoux, 26-Oct-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrextdg2.1 𝐸 = (ℂflds 𝑒)
constrextdg2.2 𝐹 = (ℂflds 𝑓)
constrextdg2.l < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
constrextdg2.n (𝜑𝑁 ∈ ω)
constrext2chnlem.q 𝑄 = (ℂflds ℚ)
constrext2chnlem.l 𝐿 = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
constrext2chnlem.a (𝜑𝐴 ∈ Constr)
Assertion
Ref Expression
constrext2chnlem (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Distinct variable groups:   < ,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑛,𝑟,𝑠,𝑡,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑛,𝑟,𝑠,𝑡,𝑥   𝑡,𝑁   𝐴,𝑛   𝑛,𝐿   𝑄,𝑛   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐴(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑄(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑥,𝑡,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑥,𝑡,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐿(𝑥,𝑡,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝑁(𝑥,𝑒,𝑓,𝑛,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem constrext2chnlem
Dummy variables 𝑣 𝑚 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2prm 16662 . . . . . 6 2 ∈ ℙ
21a1i 11 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 2 ∈ ℙ)
3 constrext2chnlem.l . . . . . . 7 𝐿 = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
4 constrext2chnlem.q . . . . . . 7 𝑄 = (ℂflds ℚ)
53, 4oveq12i 7399 . . . . . 6 (𝐿[:]𝑄) = ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))
6 cnfldbas 21268 . . . . . . . . . 10 ℂ = (Base‘ℂfld)
7 eqid 2729 . . . . . . . . . 10 (ℂflds ℚ) = (ℂflds ℚ)
8 eqid 2729 . . . . . . . . . 10 (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))
9 cnfldfld 33314 . . . . . . . . . . 11 fld ∈ Field
109a1i 11 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℂfld ∈ Field)
11 cndrng 21310 . . . . . . . . . . . 12 fld ∈ DivRing
12 qsubdrg 21336 . . . . . . . . . . . . 13 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
1312simpli 483 . . . . . . . . . . . 12 ℚ ∈ (SubRing‘ℂfld)
1412simpri 485 . . . . . . . . . . . 12 (ℂflds ℚ) ∈ DivRing
15 issdrg 20697 . . . . . . . . . . . 12 (ℚ ∈ (SubDRing‘ℂfld) ↔ (ℂfld ∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing))
1611, 13, 14, 15mpbir3an 1342 . . . . . . . . . . 11 ℚ ∈ (SubDRing‘ℂfld)
1716a1i 11 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ∈ (SubDRing‘ℂfld))
18 constr0.1 . . . . . . . . . . . . . 14 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
19 nnon 7848 . . . . . . . . . . . . . . 15 (𝑚 ∈ ω → 𝑚 ∈ On)
2019adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ω) → 𝑚 ∈ On)
2118, 20constrsscn 33730 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ω) → (𝐶𝑚) ⊆ ℂ)
2221sselda 3946 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → 𝐴 ∈ ℂ)
2322snssd 4773 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → {𝐴} ⊆ ℂ)
2423ad2antrr 726 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → {𝐴} ⊆ ℂ)
256, 7, 8, 10, 17, 24fldgenfldext 33663 . . . . . . . . 9 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ))
2625ad2antrr 726 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ))
27 extdgcl 33652 . . . . . . . 8 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0*)
2826, 27syl 17 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0*)
29 simpr 484 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝))
30 2z 12565 . . . . . . . . . . . 12 2 ∈ ℤ
3130a1i 11 . . . . . . . . . . 11 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 2 ∈ ℤ)
32 simplr 768 . . . . . . . . . . 11 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 𝑝 ∈ ℕ0)
3331, 32zexpcld 14052 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (2↑𝑝) ∈ ℤ)
3429, 33eqeltrd 2828 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) ∈ ℤ)
3534zred 12638 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) ∈ ℝ)
36 xnn0xr 12520 . . . . . . . . 9 (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0* → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*)
3726, 27, 363syl 18 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*)
38 eqid 2729 . . . . . . . . . . . . 13 (Base‘(ℂflds (lastS‘𝑣))) = (Base‘(ℂflds (lastS‘𝑣)))
39 constrextdg2.1 . . . . . . . . . . . . . . . 16 𝐸 = (ℂflds 𝑒)
40 constrextdg2.2 . . . . . . . . . . . . . . . 16 𝐹 = (ℂflds 𝑓)
41 constrextdg2.l . . . . . . . . . . . . . . . 16 < = {⟨𝑓, 𝑒⟩ ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)}
42 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ∈ ( < Chain(SubDRing‘ℂfld)))
43 simprl 770 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (𝑣‘0) = ℚ)
4443oveq2d 7403 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (𝑣‘0)) = (ℂflds ℚ))
45 eqidd 2730 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣)) = (ℂflds (lastS‘𝑣)))
46 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → 𝑣 = ∅)
4746fveq1d 6860 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = (∅‘0))
48 0fv 6902 . . . . . . . . . . . . . . . . . . . . 21 (∅‘0) = ∅
4948a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (∅‘0) = ∅)
5047, 49eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = ∅)
5143adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = ℚ)
52 1nn 12197 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ ℕ
53 nnq 12921 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ ℕ → 1 ∈ ℚ)
5452, 53ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℚ
5554ne0ii 4307 . . . . . . . . . . . . . . . . . . . . . 22 ℚ ≠ ∅
5655a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → ℚ ≠ ∅)
5751, 56eqnetrd 2992 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) ≠ ∅)
5857neneqd 2930 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → ¬ (𝑣‘0) = ∅)
5950, 58pm2.65da 816 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ¬ 𝑣 = ∅)
6059neqned 2932 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ≠ ∅)
6142, 60hashne0 32735 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 0 < (♯‘𝑣))
6239, 40, 41, 42, 10, 44, 45, 61fldext2chn 33718 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ) ∧ ∃𝑝 ∈ ℕ0 ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)))
6362simpld 494 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ))
64 fldextfld1 33643 . . . . . . . . . . . . . 14 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds ℚ) → (ℂflds (lastS‘𝑣)) ∈ Field)
6563, 64syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣)) ∈ Field)
6642chnwrd 32933 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ∈ Word (SubDRing‘ℂfld))
67 lswcl 14533 . . . . . . . . . . . . . . 15 ((𝑣 ∈ Word (SubDRing‘ℂfld) ∧ 𝑣 ≠ ∅) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
6866, 60, 67syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
6911a1i 11 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℂfld ∈ DivRing)
70 qsscn 12919 . . . . . . . . . . . . . . . . . 18 ℚ ⊆ ℂ
7170a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ℚ ⊆ ℂ)
7271, 23unssd 4155 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → (ℚ ∪ {𝐴}) ⊆ ℂ)
7372ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℚ ∪ {𝐴}) ⊆ ℂ)
746, 69, 73fldgensdrg 33264 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld))
757qrngbas 27530 . . . . . . . . . . . . . . . . . . 19 ℚ = (Base‘(ℂflds ℚ))
7675, 63fldextsdrg 33650 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
7738sdrgss 20702 . . . . . . . . . . . . . . . . . 18 (ℚ ∈ (SubDRing‘(ℂflds (lastS‘𝑣))) → ℚ ⊆ (Base‘(ℂflds (lastS‘𝑣))))
7876, 77syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ⊆ (Base‘(ℂflds (lastS‘𝑣))))
796sdrgss 20702 . . . . . . . . . . . . . . . . . . 19 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ⊆ ℂ)
8068, 79syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ⊆ ℂ)
81 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (ℂflds (lastS‘𝑣)) = (ℂflds (lastS‘𝑣))
8281, 6ressbas2 17208 . . . . . . . . . . . . . . . . . 18 ((lastS‘𝑣) ⊆ ℂ → (lastS‘𝑣) = (Base‘(ℂflds (lastS‘𝑣))))
8380, 82syl 17 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) = (Base‘(ℂflds (lastS‘𝑣))))
8478, 83sseqtrrd 3984 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ℚ ⊆ (lastS‘𝑣))
85 simprr 772 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (𝐶𝑚) ⊆ (lastS‘𝑣))
86 simpllr 775 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝐴 ∈ (𝐶𝑚))
8785, 86sseldd 3947 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → 𝐴 ∈ (lastS‘𝑣))
8887snssd 4773 . . . . . . . . . . . . . . . 16 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → {𝐴} ⊆ (lastS‘𝑣))
8984, 88unssd 4155 . . . . . . . . . . . . . . 15 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℚ ∪ {𝐴}) ⊆ (lastS‘𝑣))
906, 69, 68, 89fldgenssp 33268 . . . . . . . . . . . . . 14 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))
91 id 22 . . . . . . . . . . . . . . . 16 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ∈ (SubDRing‘ℂfld))
9281, 91subsdrg 33248 . . . . . . . . . . . . . . 15 ((lastS‘𝑣) ∈ (SubDRing‘ℂfld) → ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))) ↔ ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld) ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))))
9392biimpar 477 . . . . . . . . . . . . . 14 (((lastS‘𝑣) ∈ (SubDRing‘ℂfld) ∧ ((ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘ℂfld) ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
9468, 74, 90, 93syl12anc 836 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen (ℚ ∪ {𝐴})) ∈ (SubDRing‘(ℂflds (lastS‘𝑣))))
9538, 65, 94sdrgfldext 33646 . . . . . . . . . . . 12 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))))
9668elexd 3471 . . . . . . . . . . . . 13 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ∈ V)
97 ressabs 17218 . . . . . . . . . . . . 13 (((lastS‘𝑣) ∈ V ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣)) → ((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
9896, 90, 97syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣)) ↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) = (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
9995, 98breqtrd 5133 . . . . . . . . . . 11 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
10099ad2antrr 726 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))
101 extdgcl 33652 . . . . . . . . . 10 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0*)
102100, 101syl 17 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0*)
103 xnn0xr 12520 . . . . . . . . 9 (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0* → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ*)
104102, 103syl 17 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ*)
105 extdggt0 33653 . . . . . . . . 9 ((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) → 0 < ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))))
106100, 105syl 17 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 0 < ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))))
107 extdgmul 33659 . . . . . . . . . . 11 (((ℂflds (lastS‘𝑣))/FldExt(ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))) ∧ (ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
10899, 25, 107syl2anc 584 . . . . . . . . . 10 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
109108ad2antrr 726 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
110 xmulcom 13226 . . . . . . . . . 10 ((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ* ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ*) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
111104, 37, 110syl2anc 584 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
112109, 111eqtrd 2764 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ·e ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴}))))))
11335, 37, 104, 106, 112rexmul2 32677 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ)
114 extdggt0 33653 . . . . . . . 8 ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂflds ℚ) → 0 < ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)))
11526, 114syl 17 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → 0 < ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)))
11628, 113, 115xnn0nnd 32696 . . . . . 6 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ)
1175, 116eqeltrid 2832 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (𝐿[:]𝑄) ∈ ℕ)
11835, 104, 37, 115, 109rexmul2 32677 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ)
119102, 118xnn0nn0d 32695 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℕ0)
120119nn0zd 12555 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℤ)
121116nnnn0d 12503 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℕ0)
122121nn0zd 12555 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℤ)
123 rexmul 13231 . . . . . . . . . . 11 ((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℝ) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
124118, 113, 123syl2anc 584 . . . . . . . . . 10 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
125109, 124eqtrd 2764 . . . . . . . . 9 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))))
126125eqcomd 2735 . . . . . . . 8 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)))
127126, 29eqtrd 2764 . . . . . . 7 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (2↑𝑝))
128 dvds0lem 16236 . . . . . . 7 (((((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℤ ∧ ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∈ ℤ ∧ (2↑𝑝) ∈ ℤ) ∧ (((ℂflds (lastS‘𝑣))[:](ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))) · ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ))) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∥ (2↑𝑝))
129120, 122, 33, 127, 128syl31anc 1375 . . . . . 6 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ((ℂflds (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂflds ℚ)) ∥ (2↑𝑝))
1305, 129eqbrtrid 5142 . . . . 5 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → (𝐿[:]𝑄) ∥ (2↑𝑝))
131 dvdsprmpweq 16855 . . . . . 6 ((2 ∈ ℙ ∧ (𝐿[:]𝑄) ∈ ℕ ∧ 𝑝 ∈ ℕ0) → ((𝐿[:]𝑄) ∥ (2↑𝑝) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)))
132131imp 406 . . . . 5 (((2 ∈ ℙ ∧ (𝐿[:]𝑄) ∈ ℕ ∧ 𝑝 ∈ ℕ0) ∧ (𝐿[:]𝑄) ∥ (2↑𝑝)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
1332, 117, 32, 130, 132syl31anc 1375 . . . 4 (((((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧ ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
13462simprd 495 . . . 4 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ∃𝑝 ∈ ℕ0 ((ℂflds (lastS‘𝑣))[:](ℂflds ℚ)) = (2↑𝑝))
135133, 134r19.29a 3141 . . 3 (((((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) ∧ 𝑣 ∈ ( < Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣))) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
136 simplr 768 . . . 4 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → 𝑚 ∈ ω)
13718, 39, 40, 41, 136constrextdg2 33739 . . 3 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ∃𝑣 ∈ ( < Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶𝑚) ⊆ (lastS‘𝑣)))
138135, 137r19.29a 3141 . 2 (((𝜑𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶𝑚)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
139 constrext2chnlem.a . . 3 (𝜑𝐴 ∈ Constr)
14018isconstr 33726 . . 3 (𝐴 ∈ Constr ↔ ∃𝑚 ∈ ω 𝐴 ∈ (𝐶𝑚))
141139, 140sylib 218 . 2 (𝜑 → ∃𝑚 ∈ ω 𝐴 ∈ (𝐶𝑚))
142138, 141r19.29a 3141 1 (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  Vcvv 3447  cun 3912  wss 3914  c0 4296  {csn 4589  {cpr 4591   class class class wbr 5107  {copab 5169  cmpt 5188  Oncon0 6332  cfv 6511  (class class class)co 7387  ωcom 7842  reccrdg 8377  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cmin 11405  cn 12186  2c2 12241  0cn0 12442  0*cxnn0 12515  cz 12529  cq 12907   ·e cxmu 13071  cexp 14026  Word cword 14478  lastSclsw 14527  ccj 15062  cim 15064  abscabs 15200  cdvds 16222  cprime 16641  Basecbs 17179  s cress 17200  SubRingcsubrg 20478  DivRingcdr 20638  Fieldcfield 20639  SubDRingcsdrg 20695  fldccnfld 21264  Chaincchn 32930   fldGen cfldgen 33260  /FldExtcfldext 33634  [:]cextdg 33636  Constrcconstr 33719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-r1 9717  df-rank 9718  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xmul 13074  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-pc 16808  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ocomp 17241  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-imas 17471  df-qus 17472  df-mre 17547  df-mrc 17548  df-mri 17549  df-acs 17550  df-proset 18255  df-drs 18256  df-poset 18274  df-ipo 18487  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-nsg 19056  df-eqg 19057  df-ghm 19145  df-gim 19191  df-cntz 19249  df-oppg 19278  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-irred 20268  df-invr 20297  df-dvr 20310  df-rhm 20381  df-nzr 20422  df-subrng 20455  df-subrg 20479  df-rlreg 20603  df-domn 20604  df-idom 20605  df-drng 20640  df-field 20641  df-sdrg 20696  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lmhm 20929  df-lmim 20930  df-lmic 20931  df-lbs 20982  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-lpidl 21232  df-lpir 21233  df-pid 21247  df-cnfld 21265  df-dsmm 21641  df-frlm 21656  df-uvc 21692  df-lindf 21715  df-linds 21716  df-assa 21762  df-asp 21763  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-evls 21981  df-evl 21982  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-coe1 22067  df-evls1 22202  df-evl1 22203  df-mdeg 25960  df-deg1 25961  df-mon1 26036  df-uc1p 26037  df-q1p 26038  df-r1p 26039  df-ig1p 26040  df-chn 32931  df-fldgen 33261  df-mxidl 33431  df-dim 33595  df-fldext 33637  df-extdg 33638  df-irng 33679  df-minply 33690  df-constr 33720
This theorem is referenced by:  constrext2chn  33749
  Copyright terms: Public domain W3C validator