| Step | Hyp | Ref
| Expression |
| 1 | | 2prm 16710 |
. . . . . 6
⊢ 2 ∈
ℙ |
| 2 | 1 | a1i 11 |
. . . . 5
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → 2 ∈ ℙ) |
| 3 | | constrext2chnlem.l |
. . . . . . 7
⊢ 𝐿 = (ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) |
| 4 | | constrext2chnlem.q |
. . . . . . 7
⊢ 𝑄 = (ℂfld
↾s ℚ) |
| 5 | 3, 4 | oveq12i 7424 |
. . . . . 6
⊢ (𝐿[:]𝑄) = ((ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) |
| 6 | | cnfldbas 21329 |
. . . . . . . . . 10
⊢ ℂ =
(Base‘ℂfld) |
| 7 | | eqid 2734 |
. . . . . . . . . 10
⊢
(ℂfld ↾s ℚ) =
(ℂfld ↾s ℚ) |
| 8 | | eqid 2734 |
. . . . . . . . . 10
⊢
(ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴}))) =
(ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴}))) |
| 9 | | cnfldfld 33297 |
. . . . . . . . . . 11
⊢
ℂfld ∈ Field |
| 10 | 9 | a1i 11 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → ℂfld ∈
Field) |
| 11 | | cndrng 21372 |
. . . . . . . . . . . 12
⊢
ℂfld ∈ DivRing |
| 12 | | qsubdrg 21398 |
. . . . . . . . . . . . 13
⊢ (ℚ
∈ (SubRing‘ℂfld) ∧ (ℂfld
↾s ℚ) ∈ DivRing) |
| 13 | 12 | simpli 483 |
. . . . . . . . . . . 12
⊢ ℚ
∈ (SubRing‘ℂfld) |
| 14 | 12 | simpri 485 |
. . . . . . . . . . . 12
⊢
(ℂfld ↾s ℚ) ∈
DivRing |
| 15 | | issdrg 20756 |
. . . . . . . . . . . 12
⊢ (ℚ
∈ (SubDRing‘ℂfld) ↔ (ℂfld
∈ DivRing ∧ ℚ ∈ (SubRing‘ℂfld) ∧
(ℂfld ↾s ℚ) ∈
DivRing)) |
| 16 | 11, 13, 14, 15 | mpbir3an 1341 |
. . . . . . . . . . 11
⊢ ℚ
∈ (SubDRing‘ℂfld) |
| 17 | 16 | a1i 11 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → ℚ ∈
(SubDRing‘ℂfld)) |
| 18 | | constr0.1 |
. . . . . . . . . . . . . 14
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧
(ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) |
| 19 | | nnon 7874 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ω → 𝑚 ∈ On) |
| 20 | 19 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → 𝑚 ∈ On) |
| 21 | 18, 20 | constrsscn 33711 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ω) → (𝐶‘𝑚) ⊆ ℂ) |
| 22 | 21 | sselda 3963 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) → 𝐴 ∈ ℂ) |
| 23 | 22 | snssd 4789 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) → {𝐴} ⊆ ℂ) |
| 24 | 23 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → {𝐴} ⊆ ℂ) |
| 25 | 6, 7, 8, 10, 17, 24 | fldgenfldext 33646 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂfld
↾s ℚ)) |
| 26 | 25 | ad2antrr 726 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → (ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))/FldExt(ℂfld
↾s ℚ)) |
| 27 | | extdgcl 33635 |
. . . . . . . 8
⊢
((ℂfld ↾s (ℂfld
fldGen (ℚ ∪ {𝐴})))/FldExt(ℂfld
↾s ℚ) → ((ℂfld ↾s
(ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ∈
ℕ0*) |
| 28 | 26, 27 | syl 17 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ∈
ℕ0*) |
| 29 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) |
| 30 | | 2z 12631 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
| 31 | 30 | a1i 11 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → 2 ∈ ℤ) |
| 32 | | simplr 768 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → 𝑝 ∈ ℕ0) |
| 33 | 31, 32 | zexpcld 14109 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → (2↑𝑝) ∈ ℤ) |
| 34 | 29, 33 | eqeltrd 2833 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) ∈ ℤ) |
| 35 | 34 | zred 12704 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) ∈ ℝ) |
| 36 | | xnn0xr 12586 |
. . . . . . . . 9
⊢
(((ℂfld ↾s (ℂfld
fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ∈ ℕ0* →
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ∈ ℝ*) |
| 37 | 26, 27, 36 | 3syl 18 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ∈ ℝ*) |
| 38 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢
(Base‘(ℂfld ↾s
(lastS‘𝑣))) =
(Base‘(ℂfld ↾s (lastS‘𝑣))) |
| 39 | | constrextdg2.1 |
. . . . . . . . . . . . . . . 16
⊢ 𝐸 = (ℂfld
↾s 𝑒) |
| 40 | | constrextdg2.2 |
. . . . . . . . . . . . . . . 16
⊢ 𝐹 = (ℂfld
↾s 𝑓) |
| 41 | | constrextdg2.l |
. . . . . . . . . . . . . . . 16
⊢ < =
{〈𝑓, 𝑒〉 ∣ (𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 2)} |
| 42 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) |
| 43 | | simprl 770 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (𝑣‘0) = ℚ) |
| 44 | 43 | oveq2d 7428 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (ℂfld
↾s (𝑣‘0)) = (ℂfld
↾s ℚ)) |
| 45 | | eqidd 2735 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (ℂfld
↾s (lastS‘𝑣)) = (ℂfld
↾s (lastS‘𝑣))) |
| 46 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → 𝑣 = ∅) |
| 47 | 46 | fveq1d 6887 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) =
(∅‘0)) |
| 48 | | 0fv 6929 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∅‘0) = ∅ |
| 49 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (∅‘0) =
∅) |
| 50 | 47, 49 | eqtrd 2769 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = ∅) |
| 51 | 43 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) = ℚ) |
| 52 | | 1nn 12258 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℕ |
| 53 | | nnq 12985 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (1 ∈
ℕ → 1 ∈ ℚ) |
| 54 | 52, 53 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ∈
ℚ |
| 55 | 54 | ne0ii 4324 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℚ
≠ ∅ |
| 56 | 55 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → ℚ ≠
∅) |
| 57 | 51, 56 | eqnetrd 2998 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → (𝑣‘0) ≠ ∅) |
| 58 | 57 | neneqd 2936 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑣 = ∅) → ¬ (𝑣‘0) = ∅) |
| 59 | 50, 58 | pm2.65da 816 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → ¬ 𝑣 = ∅) |
| 60 | 59 | neqned 2938 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ≠ ∅) |
| 61 | 42, 60 | hashne0 32744 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → 0 < (♯‘𝑣)) |
| 62 | 39, 40, 41, 42, 10, 44, 45, 61 | fldext2chn 33699 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → ((ℂfld
↾s (lastS‘𝑣))/FldExt(ℂfld
↾s ℚ) ∧ ∃𝑝 ∈ ℕ0
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝))) |
| 63 | 62 | simpld 494 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (ℂfld
↾s (lastS‘𝑣))/FldExt(ℂfld
↾s ℚ)) |
| 64 | | fldextfld1 33626 |
. . . . . . . . . . . . . 14
⊢
((ℂfld ↾s (lastS‘𝑣))/FldExt(ℂfld
↾s ℚ) → (ℂfld ↾s
(lastS‘𝑣)) ∈
Field) |
| 65 | 63, 64 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (ℂfld
↾s (lastS‘𝑣)) ∈ Field) |
| 66 | 42 | chnwrd 32927 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → 𝑣 ∈ Word
(SubDRing‘ℂfld)) |
| 67 | | lswcl 14587 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ∈ Word
(SubDRing‘ℂfld) ∧ 𝑣 ≠ ∅) → (lastS‘𝑣) ∈
(SubDRing‘ℂfld)) |
| 68 | 66, 60, 67 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ∈
(SubDRing‘ℂfld)) |
| 69 | 11 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → ℂfld ∈
DivRing) |
| 70 | | qsscn 12983 |
. . . . . . . . . . . . . . . . . 18
⊢ ℚ
⊆ ℂ |
| 71 | 70 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) → ℚ ⊆
ℂ) |
| 72 | 71, 23 | unssd 4172 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) → (ℚ ∪ {𝐴}) ⊆ ℂ) |
| 73 | 72 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (ℚ ∪ {𝐴}) ⊆ ℂ) |
| 74 | 6, 69, 73 | fldgensdrg 33247 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen
(ℚ ∪ {𝐴})) ∈
(SubDRing‘ℂfld)) |
| 75 | 7 | qrngbas 27598 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℚ =
(Base‘(ℂfld ↾s
ℚ)) |
| 76 | 75, 63 | fldextsdrg 33633 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → ℚ ∈
(SubDRing‘(ℂfld ↾s (lastS‘𝑣)))) |
| 77 | 38 | sdrgss 20761 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℚ
∈ (SubDRing‘(ℂfld ↾s
(lastS‘𝑣))) →
ℚ ⊆ (Base‘(ℂfld ↾s
(lastS‘𝑣)))) |
| 78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → ℚ ⊆
(Base‘(ℂfld ↾s (lastS‘𝑣)))) |
| 79 | 6 | sdrgss 20761 |
. . . . . . . . . . . . . . . . . . 19
⊢
((lastS‘𝑣)
∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ⊆
ℂ) |
| 80 | 68, 79 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ⊆ ℂ) |
| 81 | | eqid 2734 |
. . . . . . . . . . . . . . . . . . 19
⊢
(ℂfld ↾s (lastS‘𝑣)) = (ℂfld
↾s (lastS‘𝑣)) |
| 82 | 81, 6 | ressbas2 17260 |
. . . . . . . . . . . . . . . . . 18
⊢
((lastS‘𝑣)
⊆ ℂ → (lastS‘𝑣) = (Base‘(ℂfld
↾s (lastS‘𝑣)))) |
| 83 | 80, 82 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) = (Base‘(ℂfld
↾s (lastS‘𝑣)))) |
| 84 | 78, 83 | sseqtrrd 4001 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → ℚ ⊆ (lastS‘𝑣)) |
| 85 | | simprr 772 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (𝐶‘𝑚) ⊆ (lastS‘𝑣)) |
| 86 | | simpllr 775 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → 𝐴 ∈ (𝐶‘𝑚)) |
| 87 | 85, 86 | sseldd 3964 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → 𝐴 ∈ (lastS‘𝑣)) |
| 88 | 87 | snssd 4789 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → {𝐴} ⊆ (lastS‘𝑣)) |
| 89 | 84, 88 | unssd 4172 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (ℚ ∪ {𝐴}) ⊆ (lastS‘𝑣)) |
| 90 | 6, 69, 68, 89 | fldgenssp 33251 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen
(ℚ ∪ {𝐴}))
⊆ (lastS‘𝑣)) |
| 91 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢
((lastS‘𝑣)
∈ (SubDRing‘ℂfld) → (lastS‘𝑣) ∈
(SubDRing‘ℂfld)) |
| 92 | 81, 91 | subsdrg 33231 |
. . . . . . . . . . . . . . 15
⊢
((lastS‘𝑣)
∈ (SubDRing‘ℂfld) → ((ℂfld
fldGen (ℚ ∪ {𝐴}))
∈ (SubDRing‘(ℂfld ↾s
(lastS‘𝑣))) ↔
((ℂfld fldGen (ℚ ∪ {𝐴})) ∈
(SubDRing‘ℂfld) ∧ (ℂfld fldGen
(ℚ ∪ {𝐴}))
⊆ (lastS‘𝑣)))) |
| 93 | 92 | biimpar 477 |
. . . . . . . . . . . . . 14
⊢
(((lastS‘𝑣)
∈ (SubDRing‘ℂfld) ∧ ((ℂfld
fldGen (ℚ ∪ {𝐴}))
∈ (SubDRing‘ℂfld) ∧ (ℂfld
fldGen (ℚ ∪ {𝐴}))
⊆ (lastS‘𝑣)))
→ (ℂfld fldGen (ℚ ∪ {𝐴})) ∈
(SubDRing‘(ℂfld ↾s (lastS‘𝑣)))) |
| 94 | 68, 74, 90, 93 | syl12anc 836 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (ℂfld fldGen
(ℚ ∪ {𝐴})) ∈
(SubDRing‘(ℂfld ↾s (lastS‘𝑣)))) |
| 95 | 38, 65, 94 | sdrgfldext 33629 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (ℂfld
↾s (lastS‘𝑣))/FldExt((ℂfld
↾s (lastS‘𝑣)) ↾s (ℂfld
fldGen (ℚ ∪ {𝐴})))) |
| 96 | 68 | elexd 3487 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (lastS‘𝑣) ∈ V) |
| 97 | | ressabs 17270 |
. . . . . . . . . . . . 13
⊢
(((lastS‘𝑣)
∈ V ∧ (ℂfld fldGen (ℚ ∪ {𝐴})) ⊆ (lastS‘𝑣)) → ((ℂfld
↾s (lastS‘𝑣)) ↾s (ℂfld
fldGen (ℚ ∪ {𝐴}))) = (ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) |
| 98 | 96, 90, 97 | syl2anc 584 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → ((ℂfld
↾s (lastS‘𝑣)) ↾s (ℂfld
fldGen (ℚ ∪ {𝐴}))) = (ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) |
| 99 | 95, 98 | breqtrd 5149 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → (ℂfld
↾s (lastS‘𝑣))/FldExt(ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) |
| 100 | 99 | ad2antrr 726 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → (ℂfld
↾s (lastS‘𝑣))/FldExt(ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) |
| 101 | | extdgcl 33635 |
. . . . . . . . . 10
⊢
((ℂfld ↾s (lastS‘𝑣))/FldExt(ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) →
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈
ℕ0*) |
| 102 | 100, 101 | syl 17 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈
ℕ0*) |
| 103 | | xnn0xr 12586 |
. . . . . . . . 9
⊢
(((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈
ℕ0* → ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈
ℝ*) |
| 104 | 102, 103 | syl 17 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈
ℝ*) |
| 105 | | extdggt0 33636 |
. . . . . . . . 9
⊢
((ℂfld ↾s (lastS‘𝑣))/FldExt(ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) → 0 <
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴}))))) |
| 106 | 100, 105 | syl 17 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → 0 < ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴}))))) |
| 107 | | extdgmul 33642 |
. . . . . . . . . . 11
⊢
(((ℂfld ↾s (lastS‘𝑣))/FldExt(ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴}))) ∧
(ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))/FldExt(ℂfld
↾s ℚ)) → ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (((ℂfld ↾s
(lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)))) |
| 108 | 99, 25, 107 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (((ℂfld ↾s
(lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)))) |
| 109 | 108 | ad2antrr 726 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (((ℂfld ↾s
(lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)))) |
| 110 | | xmulcom 13289 |
. . . . . . . . . 10
⊢
((((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ*
∧ ((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ∈ ℝ*) →
(((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ))) = (((ℂfld ↾s
(ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ·e ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))))) |
| 111 | 104, 37, 110 | syl2anc 584 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → (((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ))) = (((ℂfld ↾s
(ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ·e ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))))) |
| 112 | 109, 111 | eqtrd 2769 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (((ℂfld ↾s
(ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ·e ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))))) |
| 113 | 35, 37, 104, 106, 112 | rexmul2 32685 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ∈ ℝ) |
| 114 | | extdggt0 33636 |
. . . . . . . 8
⊢
((ℂfld ↾s (ℂfld
fldGen (ℚ ∪ {𝐴})))/FldExt(ℂfld
↾s ℚ) → 0 < ((ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ))) |
| 115 | 26, 114 | syl 17 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → 0 < ((ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ))) |
| 116 | 28, 113, 115 | xnn0nnd 32705 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ∈ ℕ) |
| 117 | 5, 116 | eqeltrid 2837 |
. . . . 5
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → (𝐿[:]𝑄) ∈ ℕ) |
| 118 | 35, 104, 37, 115, 109 | rexmul2 32685 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈
ℝ) |
| 119 | 102, 118 | xnn0nn0d 32704 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈
ℕ0) |
| 120 | 119 | nn0zd 12621 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈
ℤ) |
| 121 | 116 | nnnn0d 12569 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ∈ ℕ0) |
| 122 | 121 | nn0zd 12621 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ∈ ℤ) |
| 123 | | rexmul 13294 |
. . . . . . . . . . 11
⊢
((((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℝ ∧
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ∈ ℝ) → (((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ))) = (((ℂfld ↾s
(lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ·
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)))) |
| 124 | 118, 113,
123 | syl2anc 584 |
. . . . . . . . . 10
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → (((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ·e
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ))) = (((ℂfld ↾s
(lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ·
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)))) |
| 125 | 109, 124 | eqtrd 2769 |
. . . . . . . . 9
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (((ℂfld ↾s
(lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ·
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)))) |
| 126 | 125 | eqcomd 2740 |
. . . . . . . 8
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → (((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ·
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ))) = ((ℂfld ↾s
(lastS‘𝑣))[:](ℂfld
↾s ℚ))) |
| 127 | 126, 29 | eqtrd 2769 |
. . . . . . 7
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → (((ℂfld
↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ·
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ))) = (2↑𝑝)) |
| 128 | | dvds0lem 16285 |
. . . . . . 7
⊢
(((((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ∈ ℤ ∧
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ∈ ℤ ∧ (2↑𝑝) ∈ ℤ) ∧
(((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))) ·
((ℂfld ↾s (ℂfld fldGen
(ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ))) = (2↑𝑝)) → ((ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ∥ (2↑𝑝)) |
| 129 | 120, 122,
33, 127, 128 | syl31anc 1374 |
. . . . . 6
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ((ℂfld
↾s (ℂfld fldGen (ℚ ∪ {𝐴})))[:](ℂfld
↾s ℚ)) ∥ (2↑𝑝)) |
| 130 | 5, 129 | eqbrtrid 5158 |
. . . . 5
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → (𝐿[:]𝑄) ∥ (2↑𝑝)) |
| 131 | | dvdsprmpweq 16903 |
. . . . . 6
⊢ ((2
∈ ℙ ∧ (𝐿[:]𝑄) ∈ ℕ ∧ 𝑝 ∈ ℕ0) → ((𝐿[:]𝑄) ∥ (2↑𝑝) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛))) |
| 132 | 131 | imp 406 |
. . . . 5
⊢ (((2
∈ ℙ ∧ (𝐿[:]𝑄) ∈ ℕ ∧ 𝑝 ∈ ℕ0) ∧ (𝐿[:]𝑄) ∥ (2↑𝑝)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) |
| 133 | 2, 117, 32, 130, 132 | syl31anc 1374 |
. . . 4
⊢
(((((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) ∧ 𝑝 ∈ ℕ0) ∧
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) |
| 134 | 62 | simprd 495 |
. . . 4
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → ∃𝑝 ∈ ℕ0
((ℂfld ↾s (lastS‘𝑣))[:](ℂfld
↾s ℚ)) = (2↑𝑝)) |
| 135 | 133, 134 | r19.29a 3149 |
. . 3
⊢
(((((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) ∧ 𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))) ∧ ((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) |
| 136 | | simplr 768 |
. . . 4
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) → 𝑚 ∈ ω) |
| 137 | 18, 39, 40, 41, 136 | constrextdg2 33720 |
. . 3
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) → ∃𝑣 ∈ ( <
Chain(SubDRing‘ℂfld))((𝑣‘0) = ℚ ∧ (𝐶‘𝑚) ⊆ (lastS‘𝑣))) |
| 138 | 135, 137 | r19.29a 3149 |
. 2
⊢ (((𝜑 ∧ 𝑚 ∈ ω) ∧ 𝐴 ∈ (𝐶‘𝑚)) → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) |
| 139 | | constrext2chnlem.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ Constr) |
| 140 | 18 | isconstr 33707 |
. . 3
⊢ (𝐴 ∈ Constr ↔
∃𝑚 ∈ ω
𝐴 ∈ (𝐶‘𝑚)) |
| 141 | 139, 140 | sylib 218 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ ω 𝐴 ∈ (𝐶‘𝑚)) |
| 142 | 138, 141 | r19.29a 3149 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ0 (𝐿[:]𝑄) = (2↑𝑛)) |