MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0nnn0pnf Structured version   Visualization version   GIF version

Theorem xnn0nnn0pnf 12459
Description: An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0nnn0pnf ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞)

Proof of Theorem xnn0nnn0pnf
StepHypRef Expression
1 elxnn0 12448 . . 3 (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
2 pm2.53 851 . . 3 ((𝑁 ∈ ℕ0𝑁 = +∞) → (¬ 𝑁 ∈ ℕ0𝑁 = +∞))
31, 2sylbi 217 . 2 (𝑁 ∈ ℕ0* → (¬ 𝑁 ∈ ℕ0𝑁 = +∞))
43imp 406 1 ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2110  +∞cpnf 11135  0cn0 12373  0*cxnn0 12446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-pow 5301  ax-un 7663  ax-cnex 11054
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3436  df-un 3905  df-ss 3917  df-pw 4550  df-sn 4575  df-uni 4858  df-pnf 11140  df-xnn0 12447
This theorem is referenced by:  xnn0xaddcl  13126  xnn0lem1lt  13135  nn0xmulclb  32744
  Copyright terms: Public domain W3C validator