![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnn0nnn0pnf | Structured version Visualization version GIF version |
Description: An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
xnn0nnn0pnf | ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 12546 | . . 3 ⊢ (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
2 | pm2.53 850 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → (¬ 𝑁 ∈ ℕ0 → 𝑁 = +∞)) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝑁 ∈ ℕ0* → (¬ 𝑁 ∈ ℕ0 → 𝑁 = +∞)) |
4 | 3 | imp 408 | 1 ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 +∞cpnf 11245 ℕ0cn0 12472 ℕ0*cxnn0 12544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-pow 5364 ax-un 7725 ax-cnex 11166 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 df-in 3956 df-ss 3966 df-pw 4605 df-sn 4630 df-uni 4910 df-pnf 11250 df-xnn0 12545 |
This theorem is referenced by: xnn0xaddcl 13214 xnn0lem1lt 13223 nn0xmulclb 31984 |
Copyright terms: Public domain | W3C validator |