| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnn0nnn0pnf | Structured version Visualization version GIF version | ||
| Description: An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| xnn0nnn0pnf | ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 12462 | . . 3 ⊢ (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
| 2 | pm2.53 851 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → (¬ 𝑁 ∈ ℕ0 → 𝑁 = +∞)) | |
| 3 | 1, 2 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0* → (¬ 𝑁 ∈ ℕ0 → 𝑁 = +∞)) |
| 4 | 3 | imp 406 | 1 ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 +∞cpnf 11149 ℕ0cn0 12387 ℕ0*cxnn0 12460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-pow 5305 ax-un 7674 ax-cnex 11068 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-pw 4551 df-sn 4576 df-uni 4859 df-pnf 11154 df-xnn0 12461 |
| This theorem is referenced by: xnn0xaddcl 13140 xnn0lem1lt 13149 nn0xmulclb 32761 |
| Copyright terms: Public domain | W3C validator |