MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0nnn0pnf Structured version   Visualization version   GIF version

Theorem xnn0nnn0pnf 12318
Description: An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0nnn0pnf ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞)

Proof of Theorem xnn0nnn0pnf
StepHypRef Expression
1 elxnn0 12307 . . 3 (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
2 pm2.53 848 . . 3 ((𝑁 ∈ ℕ0𝑁 = +∞) → (¬ 𝑁 ∈ ℕ0𝑁 = +∞))
31, 2sylbi 216 . 2 (𝑁 ∈ ℕ0* → (¬ 𝑁 ∈ ℕ0𝑁 = +∞))
43imp 407 1 ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  +∞cpnf 11006  0cn0 12233  0*cxnn0 12305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-pow 5288  ax-un 7588  ax-cnex 10927
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-in 3894  df-ss 3904  df-pw 4535  df-sn 4562  df-uni 4840  df-pnf 11011  df-xnn0 12306
This theorem is referenced by:  xnn0xaddcl  12969  xnn0lem1lt  12978  nn0xmulclb  31094
  Copyright terms: Public domain W3C validator