![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnn0nnn0pnf | Structured version Visualization version GIF version |
Description: An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
xnn0nnn0pnf | ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 12599 | . . 3 ⊢ (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0 ∨ 𝑁 = +∞)) | |
2 | pm2.53 851 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∨ 𝑁 = +∞) → (¬ 𝑁 ∈ ℕ0 → 𝑁 = +∞)) | |
3 | 1, 2 | sylbi 217 | . 2 ⊢ (𝑁 ∈ ℕ0* → (¬ 𝑁 ∈ ℕ0 → 𝑁 = +∞)) |
4 | 3 | imp 406 | 1 ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 +∞cpnf 11290 ℕ0cn0 12524 ℕ0*cxnn0 12597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-pow 5371 ax-un 7754 ax-cnex 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-pw 4607 df-sn 4632 df-uni 4913 df-pnf 11295 df-xnn0 12598 |
This theorem is referenced by: xnn0xaddcl 13274 xnn0lem1lt 13283 nn0xmulclb 32782 |
Copyright terms: Public domain | W3C validator |