Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xnn0lem1lt | Structured version Visualization version GIF version |
Description: Extended nonnegative integer ordering relation. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
Ref | Expression |
---|---|
xnn0lem1lt | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0lem1lt 12315 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | |
2 | 1 | adantlr 711 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
3 | nn0re 12172 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ) | |
4 | 3 | rexrd 10956 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ*) |
5 | pnfge 12795 | . . . . . 6 ⊢ (𝑀 ∈ ℝ* → 𝑀 ≤ +∞) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ≤ +∞) |
7 | 6 | ad2antrr 722 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑀 ≤ +∞) |
8 | simpll 763 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0) | |
9 | peano2rem 11218 | . . . . 5 ⊢ (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ) | |
10 | ltpnf 12785 | . . . . 5 ⊢ ((𝑀 − 1) ∈ ℝ → (𝑀 − 1) < +∞) | |
11 | 8, 3, 9, 10 | 4syl 19 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 − 1) < +∞) |
12 | 7, 11 | 2thd 264 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ +∞ ↔ (𝑀 − 1) < +∞)) |
13 | xnn0nnn0pnf 12248 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) | |
14 | 13 | adantll 710 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) |
15 | 14 | breq2d 5082 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ 𝑀 ≤ +∞)) |
16 | 14 | breq2d 5082 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑀 − 1) < 𝑁 ↔ (𝑀 − 1) < +∞)) |
17 | 12, 15, 16 | 3bitr4d 310 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
18 | 2, 17 | pm2.61dan 809 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 1c1 10803 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 ℕ0cn0 12163 ℕ0*cxnn0 12235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-xnn0 12236 df-z 12250 |
This theorem is referenced by: xnn01gt 30995 drngdimgt0 31603 cusgracyclt3v 33018 |
Copyright terms: Public domain | W3C validator |