Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xnn0lem1lt | Structured version Visualization version GIF version |
Description: Extended nonnegative integer ordering relation. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
Ref | Expression |
---|---|
xnn0lem1lt | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0lem1lt 12242 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | |
2 | 1 | adantlr 715 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
3 | nn0re 12099 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ) | |
4 | 3 | rexrd 10883 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ*) |
5 | pnfge 12722 | . . . . . 6 ⊢ (𝑀 ∈ ℝ* → 𝑀 ≤ +∞) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ≤ +∞) |
7 | 6 | ad2antrr 726 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑀 ≤ +∞) |
8 | simpll 767 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0) | |
9 | peano2rem 11145 | . . . . 5 ⊢ (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ) | |
10 | ltpnf 12712 | . . . . 5 ⊢ ((𝑀 − 1) ∈ ℝ → (𝑀 − 1) < +∞) | |
11 | 8, 3, 9, 10 | 4syl 19 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 − 1) < +∞) |
12 | 7, 11 | 2thd 268 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ +∞ ↔ (𝑀 − 1) < +∞)) |
13 | xnn0nnn0pnf 12175 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) | |
14 | 13 | adantll 714 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) |
15 | 14 | breq2d 5065 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ 𝑀 ≤ +∞)) |
16 | 14 | breq2d 5065 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑀 − 1) < 𝑁 ↔ (𝑀 − 1) < +∞)) |
17 | 12, 15, 16 | 3bitr4d 314 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
18 | 2, 17 | pm2.61dan 813 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 (class class class)co 7213 ℝcr 10728 1c1 10730 +∞cpnf 10864 ℝ*cxr 10866 < clt 10867 ≤ cle 10868 − cmin 11062 ℕ0cn0 12090 ℕ0*cxnn0 12162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-xnn0 12163 df-z 12177 |
This theorem is referenced by: xnn01gt 30813 drngdimgt0 31415 cusgracyclt3v 32831 |
Copyright terms: Public domain | W3C validator |