MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0lem1lt Structured version   Visualization version   GIF version

Theorem xnn0lem1lt 13220
Description: Extended nonnegative integer ordering relation. (Contributed by Thierry Arnoux, 30-Jul-2023.)
Assertion
Ref Expression
xnn0lem1lt ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))

Proof of Theorem xnn0lem1lt
StepHypRef Expression
1 nn0lem1lt 12624 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
21adantlr 712 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
3 nn0re 12478 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
43rexrd 11261 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℝ*)
5 pnfge 13107 . . . . . 6 (𝑀 ∈ ℝ*𝑀 ≤ +∞)
64, 5syl 17 . . . . 5 (𝑀 ∈ ℕ0𝑀 ≤ +∞)
76ad2antrr 723 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑀 ≤ +∞)
8 simpll 764 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
9 peano2rem 11524 . . . . 5 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
10 ltpnf 13097 . . . . 5 ((𝑀 − 1) ∈ ℝ → (𝑀 − 1) < +∞)
118, 3, 9, 104syl 19 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 − 1) < +∞)
127, 112thd 265 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ +∞ ↔ (𝑀 − 1) < +∞))
13 xnn0nnn0pnf 12554 . . . . 5 ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞)
1413adantll 711 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞)
1514breq2d 5150 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀𝑁𝑀 ≤ +∞))
1614breq2d 5150 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑀 − 1) < 𝑁 ↔ (𝑀 − 1) < +∞))
1712, 15, 163bitr4d 311 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
182, 17pm2.61dan 810 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098   class class class wbr 5138  (class class class)co 7401  cr 11105  1c1 11107  +∞cpnf 11242  *cxr 11244   < clt 11245  cle 11246  cmin 11441  0cn0 12469  0*cxnn0 12541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-xnn0 12542  df-z 12556
This theorem is referenced by:  xnn01gt  32452  drngdimgt0  33182  cusgracyclt3v  34636
  Copyright terms: Public domain W3C validator