| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnn0lem1lt | Structured version Visualization version GIF version | ||
| Description: Extended nonnegative integer ordering relation. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| xnn0lem1lt | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0lem1lt 12544 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | |
| 2 | 1 | adantlr 715 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
| 3 | nn0re 12396 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ) | |
| 4 | 3 | rexrd 11168 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ*) |
| 5 | pnfge 13035 | . . . . . 6 ⊢ (𝑀 ∈ ℝ* → 𝑀 ≤ +∞) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ≤ +∞) |
| 7 | 6 | ad2antrr 726 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑀 ≤ +∞) |
| 8 | simpll 766 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0) | |
| 9 | peano2rem 11434 | . . . . 5 ⊢ (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ) | |
| 10 | ltpnf 13025 | . . . . 5 ⊢ ((𝑀 − 1) ∈ ℝ → (𝑀 − 1) < +∞) | |
| 11 | 8, 3, 9, 10 | 4syl 19 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 − 1) < +∞) |
| 12 | 7, 11 | 2thd 265 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ +∞ ↔ (𝑀 − 1) < +∞)) |
| 13 | xnn0nnn0pnf 12473 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) | |
| 14 | 13 | adantll 714 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) |
| 15 | 14 | breq2d 5105 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ 𝑀 ≤ +∞)) |
| 16 | 14 | breq2d 5105 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑀 − 1) < 𝑁 ↔ (𝑀 − 1) < +∞)) |
| 17 | 12, 15, 16 | 3bitr4d 311 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
| 18 | 2, 17 | pm2.61dan 812 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5093 (class class class)co 7352 ℝcr 11011 1c1 11013 +∞cpnf 11149 ℝ*cxr 11151 < clt 11152 ≤ cle 11153 − cmin 11350 ℕ0cn0 12387 ℕ0*cxnn0 12460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-n0 12388 df-xnn0 12461 df-z 12475 |
| This theorem is referenced by: xnn01gt 32760 drngdimgt0 33638 cusgracyclt3v 35207 |
| Copyright terms: Public domain | W3C validator |