![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnn0lem1lt | Structured version Visualization version GIF version |
Description: Extended nonnegative integer ordering relation. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
Ref | Expression |
---|---|
xnn0lem1lt | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0lem1lt 12660 | . . 3 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) | |
2 | 1 | adantlr 713 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
3 | nn0re 12514 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ) | |
4 | 3 | rexrd 11296 | . . . . . 6 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ*) |
5 | pnfge 13145 | . . . . . 6 ⊢ (𝑀 ∈ ℝ* → 𝑀 ≤ +∞) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℕ0 → 𝑀 ≤ +∞) |
7 | 6 | ad2antrr 724 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑀 ≤ +∞) |
8 | simpll 765 | . . . . 5 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0) | |
9 | peano2rem 11559 | . . . . 5 ⊢ (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ) | |
10 | ltpnf 13135 | . . . . 5 ⊢ ((𝑀 − 1) ∈ ℝ → (𝑀 − 1) < +∞) | |
11 | 8, 3, 9, 10 | 4syl 19 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 − 1) < +∞) |
12 | 7, 11 | 2thd 264 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ +∞ ↔ (𝑀 − 1) < +∞)) |
13 | xnn0nnn0pnf 12590 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) | |
14 | 13 | adantll 712 | . . . 4 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞) |
15 | 14 | breq2d 5161 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ 𝑀 ≤ +∞)) |
16 | 14 | breq2d 5161 | . . 3 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑀 − 1) < 𝑁 ↔ (𝑀 − 1) < +∞)) |
17 | 12, 15, 16 | 3bitr4d 310 | . 2 ⊢ (((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
18 | 2, 17 | pm2.61dan 811 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0*) → (𝑀 ≤ 𝑁 ↔ (𝑀 − 1) < 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 class class class wbr 5149 (class class class)co 7419 ℝcr 11139 1c1 11141 +∞cpnf 11277 ℝ*cxr 11279 < clt 11280 ≤ cle 11281 − cmin 11476 ℕ0cn0 12505 ℕ0*cxnn0 12577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-xnn0 12578 df-z 12592 |
This theorem is referenced by: xnn01gt 32622 drngdimgt0 33444 cusgracyclt3v 34894 |
Copyright terms: Public domain | W3C validator |