MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0lem1lt Structured version   Visualization version   GIF version

Theorem xnn0lem1lt 13258
Description: Extended nonnegative integer ordering relation. (Contributed by Thierry Arnoux, 30-Jul-2023.)
Assertion
Ref Expression
xnn0lem1lt ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))

Proof of Theorem xnn0lem1lt
StepHypRef Expression
1 nn0lem1lt 12660 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
21adantlr 713 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
3 nn0re 12514 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
43rexrd 11296 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℝ*)
5 pnfge 13145 . . . . . 6 (𝑀 ∈ ℝ*𝑀 ≤ +∞)
64, 5syl 17 . . . . 5 (𝑀 ∈ ℕ0𝑀 ≤ +∞)
76ad2antrr 724 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑀 ≤ +∞)
8 simpll 765 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
9 peano2rem 11559 . . . . 5 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
10 ltpnf 13135 . . . . 5 ((𝑀 − 1) ∈ ℝ → (𝑀 − 1) < +∞)
118, 3, 9, 104syl 19 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 − 1) < +∞)
127, 112thd 264 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀 ≤ +∞ ↔ (𝑀 − 1) < +∞))
13 xnn0nnn0pnf 12590 . . . . 5 ((𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞)
1413adantll 712 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → 𝑁 = +∞)
1514breq2d 5161 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀𝑁𝑀 ≤ +∞))
1614breq2d 5161 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → ((𝑀 − 1) < 𝑁 ↔ (𝑀 − 1) < +∞))
1712, 15, 163bitr4d 310 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) ∧ ¬ 𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
182, 17pm2.61dan 811 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0*) → (𝑀𝑁 ↔ (𝑀 − 1) < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098   class class class wbr 5149  (class class class)co 7419  cr 11139  1c1 11141  +∞cpnf 11277  *cxr 11279   < clt 11280  cle 11281  cmin 11476  0cn0 12505  0*cxnn0 12577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-xnn0 12578  df-z 12592
This theorem is referenced by:  xnn01gt  32622  drngdimgt0  33444  cusgracyclt3v  34894
  Copyright terms: Public domain W3C validator