Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setindtr Structured version   Visualization version   GIF version

Theorem setindtr 42981
Description: Set induction for sets contained in a transitive set. If we are allowed to assume Infinity, then all sets have a transitive closure and this reduces to setind 9803; however, this version is useful without Infinity. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
setindtr (∀𝑥(𝑥𝐴𝑥𝐴) → (∃𝑦(Tr 𝑦𝐵𝑦) → 𝐵𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem setindtr
StepHypRef Expression
1 nfv 1913 . . . . . . . . . . 11 𝑥Tr 𝑦
2 nfa1 2152 . . . . . . . . . . 11 𝑥𝑥(𝑥𝐴𝑥𝐴)
31, 2nfan 1898 . . . . . . . . . 10 𝑥(Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴))
4 eldifn 4155 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑦𝐴) → ¬ 𝑥𝐴)
54adantl 481 . . . . . . . . . . . . 13 (((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (𝑦𝐴)) → ¬ 𝑥𝐴)
6 trss 5294 . . . . . . . . . . . . . . . . . 18 (Tr 𝑦 → (𝑥𝑦𝑥𝑦))
7 eldifi 4154 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝑦𝐴) → 𝑥𝑦)
86, 7impel 505 . . . . . . . . . . . . . . . . 17 ((Tr 𝑦𝑥 ∈ (𝑦𝐴)) → 𝑥𝑦)
9 dfss2 3994 . . . . . . . . . . . . . . . . 17 (𝑥𝑦 ↔ (𝑥𝑦) = 𝑥)
108, 9sylib 218 . . . . . . . . . . . . . . . 16 ((Tr 𝑦𝑥 ∈ (𝑦𝐴)) → (𝑥𝑦) = 𝑥)
1110adantlr 714 . . . . . . . . . . . . . . 15 (((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (𝑦𝐴)) → (𝑥𝑦) = 𝑥)
1211sseq1d 4040 . . . . . . . . . . . . . 14 (((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (𝑦𝐴)) → ((𝑥𝑦) ⊆ 𝐴𝑥𝐴))
13 sp 2184 . . . . . . . . . . . . . . 15 (∀𝑥(𝑥𝐴𝑥𝐴) → (𝑥𝐴𝑥𝐴))
1413ad2antlr 726 . . . . . . . . . . . . . 14 (((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (𝑦𝐴)) → (𝑥𝐴𝑥𝐴))
1512, 14sylbid 240 . . . . . . . . . . . . 13 (((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (𝑦𝐴)) → ((𝑥𝑦) ⊆ 𝐴𝑥𝐴))
165, 15mtod 198 . . . . . . . . . . . 12 (((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (𝑦𝐴)) → ¬ (𝑥𝑦) ⊆ 𝐴)
17 inssdif0 4397 . . . . . . . . . . . 12 ((𝑥𝑦) ⊆ 𝐴 ↔ (𝑥 ∩ (𝑦𝐴)) = ∅)
1816, 17sylnib 328 . . . . . . . . . . 11 (((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (𝑦𝐴)) → ¬ (𝑥 ∩ (𝑦𝐴)) = ∅)
1918ex 412 . . . . . . . . . 10 ((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → (𝑥 ∈ (𝑦𝐴) → ¬ (𝑥 ∩ (𝑦𝐴)) = ∅))
203, 19ralrimi 3263 . . . . . . . . 9 ((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → ∀𝑥 ∈ (𝑦𝐴) ¬ (𝑥 ∩ (𝑦𝐴)) = ∅)
21 ralnex 3078 . . . . . . . . 9 (∀𝑥 ∈ (𝑦𝐴) ¬ (𝑥 ∩ (𝑦𝐴)) = ∅ ↔ ¬ ∃𝑥 ∈ (𝑦𝐴)(𝑥 ∩ (𝑦𝐴)) = ∅)
2220, 21sylib 218 . . . . . . . 8 ((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → ¬ ∃𝑥 ∈ (𝑦𝐴)(𝑥 ∩ (𝑦𝐴)) = ∅)
23 vex 3492 . . . . . . . . . . 11 𝑦 ∈ V
2423difexi 5348 . . . . . . . . . 10 (𝑦𝐴) ∈ V
25 zfreg 9664 . . . . . . . . . 10 (((𝑦𝐴) ∈ V ∧ (𝑦𝐴) ≠ ∅) → ∃𝑥 ∈ (𝑦𝐴)(𝑥 ∩ (𝑦𝐴)) = ∅)
2624, 25mpan 689 . . . . . . . . 9 ((𝑦𝐴) ≠ ∅ → ∃𝑥 ∈ (𝑦𝐴)(𝑥 ∩ (𝑦𝐴)) = ∅)
2726necon1bi 2975 . . . . . . . 8 (¬ ∃𝑥 ∈ (𝑦𝐴)(𝑥 ∩ (𝑦𝐴)) = ∅ → (𝑦𝐴) = ∅)
2822, 27syl 17 . . . . . . 7 ((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → (𝑦𝐴) = ∅)
29 ssdif0 4389 . . . . . . 7 (𝑦𝐴 ↔ (𝑦𝐴) = ∅)
3028, 29sylibr 234 . . . . . 6 ((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → 𝑦𝐴)
3130adantlr 714 . . . . 5 (((Tr 𝑦𝐵𝑦) ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → 𝑦𝐴)
32 simplr 768 . . . . 5 (((Tr 𝑦𝐵𝑦) ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → 𝐵𝑦)
3331, 32sseldd 4009 . . . 4 (((Tr 𝑦𝐵𝑦) ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → 𝐵𝐴)
3433ex 412 . . 3 ((Tr 𝑦𝐵𝑦) → (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐵𝐴))
3534exlimiv 1929 . 2 (∃𝑦(Tr 𝑦𝐵𝑦) → (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐵𝐴))
3635com12 32 1 (∀𝑥(𝑥𝐴𝑥𝐴) → (∃𝑦(Tr 𝑦𝐵𝑦) → 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  cin 3975  wss 3976  c0 4352  Tr wtr 5283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-ss 3993  df-nul 4353  df-uni 4932  df-tr 5284
This theorem is referenced by:  setindtrs  42982
  Copyright terms: Public domain W3C validator