Proof of Theorem setindtr
Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥Tr 𝑦 |
2 | | nfa1 2150 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) |
3 | 1, 2 | nfan 1903 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(Tr 𝑦 ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) |
4 | | eldifn 4058 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝑦 ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) |
5 | 4 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((Tr
𝑦 ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) ∧ 𝑥 ∈ (𝑦 ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
6 | | trss 5196 |
. . . . . . . . . . . . . . . . . 18
⊢ (Tr 𝑦 → (𝑥 ∈ 𝑦 → 𝑥 ⊆ 𝑦)) |
7 | | eldifi 4057 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (𝑦 ∖ 𝐴) → 𝑥 ∈ 𝑦) |
8 | 6, 7 | impel 505 |
. . . . . . . . . . . . . . . . 17
⊢ ((Tr
𝑦 ∧ 𝑥 ∈ (𝑦 ∖ 𝐴)) → 𝑥 ⊆ 𝑦) |
9 | | df-ss 3900 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ⊆ 𝑦 ↔ (𝑥 ∩ 𝑦) = 𝑥) |
10 | 8, 9 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ ((Tr
𝑦 ∧ 𝑥 ∈ (𝑦 ∖ 𝐴)) → (𝑥 ∩ 𝑦) = 𝑥) |
11 | 10 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ (((Tr
𝑦 ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) ∧ 𝑥 ∈ (𝑦 ∖ 𝐴)) → (𝑥 ∩ 𝑦) = 𝑥) |
12 | 11 | sseq1d 3948 |
. . . . . . . . . . . . . 14
⊢ (((Tr
𝑦 ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) ∧ 𝑥 ∈ (𝑦 ∖ 𝐴)) → ((𝑥 ∩ 𝑦) ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴)) |
13 | | sp 2178 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) |
14 | 13 | ad2antlr 723 |
. . . . . . . . . . . . . 14
⊢ (((Tr
𝑦 ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) ∧ 𝑥 ∈ (𝑦 ∖ 𝐴)) → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) |
15 | 12, 14 | sylbid 239 |
. . . . . . . . . . . . 13
⊢ (((Tr
𝑦 ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) ∧ 𝑥 ∈ (𝑦 ∖ 𝐴)) → ((𝑥 ∩ 𝑦) ⊆ 𝐴 → 𝑥 ∈ 𝐴)) |
16 | 5, 15 | mtod 197 |
. . . . . . . . . . . 12
⊢ (((Tr
𝑦 ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) ∧ 𝑥 ∈ (𝑦 ∖ 𝐴)) → ¬ (𝑥 ∩ 𝑦) ⊆ 𝐴) |
17 | | inssdif0 4300 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∩ 𝑦) ⊆ 𝐴 ↔ (𝑥 ∩ (𝑦 ∖ 𝐴)) = ∅) |
18 | 16, 17 | sylnib 327 |
. . . . . . . . . . 11
⊢ (((Tr
𝑦 ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) ∧ 𝑥 ∈ (𝑦 ∖ 𝐴)) → ¬ (𝑥 ∩ (𝑦 ∖ 𝐴)) = ∅) |
19 | 18 | ex 412 |
. . . . . . . . . 10
⊢ ((Tr
𝑦 ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → (𝑥 ∈ (𝑦 ∖ 𝐴) → ¬ (𝑥 ∩ (𝑦 ∖ 𝐴)) = ∅)) |
20 | 3, 19 | ralrimi 3139 |
. . . . . . . . 9
⊢ ((Tr
𝑦 ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → ∀𝑥 ∈ (𝑦 ∖ 𝐴) ¬ (𝑥 ∩ (𝑦 ∖ 𝐴)) = ∅) |
21 | | ralnex 3163 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
(𝑦 ∖ 𝐴) ¬ (𝑥 ∩ (𝑦 ∖ 𝐴)) = ∅ ↔ ¬ ∃𝑥 ∈ (𝑦 ∖ 𝐴)(𝑥 ∩ (𝑦 ∖ 𝐴)) = ∅) |
22 | 20, 21 | sylib 217 |
. . . . . . . 8
⊢ ((Tr
𝑦 ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → ¬ ∃𝑥 ∈ (𝑦 ∖ 𝐴)(𝑥 ∩ (𝑦 ∖ 𝐴)) = ∅) |
23 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
24 | 23 | difexi 5247 |
. . . . . . . . . 10
⊢ (𝑦 ∖ 𝐴) ∈ V |
25 | | zfreg 9284 |
. . . . . . . . . 10
⊢ (((𝑦 ∖ 𝐴) ∈ V ∧ (𝑦 ∖ 𝐴) ≠ ∅) → ∃𝑥 ∈ (𝑦 ∖ 𝐴)(𝑥 ∩ (𝑦 ∖ 𝐴)) = ∅) |
26 | 24, 25 | mpan 686 |
. . . . . . . . 9
⊢ ((𝑦 ∖ 𝐴) ≠ ∅ → ∃𝑥 ∈ (𝑦 ∖ 𝐴)(𝑥 ∩ (𝑦 ∖ 𝐴)) = ∅) |
27 | 26 | necon1bi 2971 |
. . . . . . . 8
⊢ (¬
∃𝑥 ∈ (𝑦 ∖ 𝐴)(𝑥 ∩ (𝑦 ∖ 𝐴)) = ∅ → (𝑦 ∖ 𝐴) = ∅) |
28 | 22, 27 | syl 17 |
. . . . . . 7
⊢ ((Tr
𝑦 ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → (𝑦 ∖ 𝐴) = ∅) |
29 | | ssdif0 4294 |
. . . . . . 7
⊢ (𝑦 ⊆ 𝐴 ↔ (𝑦 ∖ 𝐴) = ∅) |
30 | 28, 29 | sylibr 233 |
. . . . . 6
⊢ ((Tr
𝑦 ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → 𝑦 ⊆ 𝐴) |
31 | 30 | adantlr 711 |
. . . . 5
⊢ (((Tr
𝑦 ∧ 𝐵 ∈ 𝑦) ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → 𝑦 ⊆ 𝐴) |
32 | | simplr 765 |
. . . . 5
⊢ (((Tr
𝑦 ∧ 𝐵 ∈ 𝑦) ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → 𝐵 ∈ 𝑦) |
33 | 31, 32 | sseldd 3918 |
. . . 4
⊢ (((Tr
𝑦 ∧ 𝐵 ∈ 𝑦) ∧ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → 𝐵 ∈ 𝐴) |
34 | 33 | ex 412 |
. . 3
⊢ ((Tr
𝑦 ∧ 𝐵 ∈ 𝑦) → (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
35 | 34 | exlimiv 1934 |
. 2
⊢
(∃𝑦(Tr 𝑦 ∧ 𝐵 ∈ 𝑦) → (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
36 | 35 | com12 32 |
1
⊢
(∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → (∃𝑦(Tr 𝑦 ∧ 𝐵 ∈ 𝑦) → 𝐵 ∈ 𝐴)) |