Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setindtr Structured version   Visualization version   GIF version

Theorem setindtr 40846
Description: Set induction for sets contained in a transitive set. If we are allowed to assume Infinity, then all sets have a transitive closure and this reduces to setind 9492; however, this version is useful without Infinity. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
setindtr (∀𝑥(𝑥𝐴𝑥𝐴) → (∃𝑦(Tr 𝑦𝐵𝑦) → 𝐵𝐴))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem setindtr
StepHypRef Expression
1 nfv 1917 . . . . . . . . . . 11 𝑥Tr 𝑦
2 nfa1 2148 . . . . . . . . . . 11 𝑥𝑥(𝑥𝐴𝑥𝐴)
31, 2nfan 1902 . . . . . . . . . 10 𝑥(Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴))
4 eldifn 4062 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑦𝐴) → ¬ 𝑥𝐴)
54adantl 482 . . . . . . . . . . . . 13 (((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (𝑦𝐴)) → ¬ 𝑥𝐴)
6 trss 5200 . . . . . . . . . . . . . . . . . 18 (Tr 𝑦 → (𝑥𝑦𝑥𝑦))
7 eldifi 4061 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝑦𝐴) → 𝑥𝑦)
86, 7impel 506 . . . . . . . . . . . . . . . . 17 ((Tr 𝑦𝑥 ∈ (𝑦𝐴)) → 𝑥𝑦)
9 df-ss 3904 . . . . . . . . . . . . . . . . 17 (𝑥𝑦 ↔ (𝑥𝑦) = 𝑥)
108, 9sylib 217 . . . . . . . . . . . . . . . 16 ((Tr 𝑦𝑥 ∈ (𝑦𝐴)) → (𝑥𝑦) = 𝑥)
1110adantlr 712 . . . . . . . . . . . . . . 15 (((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (𝑦𝐴)) → (𝑥𝑦) = 𝑥)
1211sseq1d 3952 . . . . . . . . . . . . . 14 (((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (𝑦𝐴)) → ((𝑥𝑦) ⊆ 𝐴𝑥𝐴))
13 sp 2176 . . . . . . . . . . . . . . 15 (∀𝑥(𝑥𝐴𝑥𝐴) → (𝑥𝐴𝑥𝐴))
1413ad2antlr 724 . . . . . . . . . . . . . 14 (((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (𝑦𝐴)) → (𝑥𝐴𝑥𝐴))
1512, 14sylbid 239 . . . . . . . . . . . . 13 (((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (𝑦𝐴)) → ((𝑥𝑦) ⊆ 𝐴𝑥𝐴))
165, 15mtod 197 . . . . . . . . . . . 12 (((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (𝑦𝐴)) → ¬ (𝑥𝑦) ⊆ 𝐴)
17 inssdif0 4303 . . . . . . . . . . . 12 ((𝑥𝑦) ⊆ 𝐴 ↔ (𝑥 ∩ (𝑦𝐴)) = ∅)
1816, 17sylnib 328 . . . . . . . . . . 11 (((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) ∧ 𝑥 ∈ (𝑦𝐴)) → ¬ (𝑥 ∩ (𝑦𝐴)) = ∅)
1918ex 413 . . . . . . . . . 10 ((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → (𝑥 ∈ (𝑦𝐴) → ¬ (𝑥 ∩ (𝑦𝐴)) = ∅))
203, 19ralrimi 3141 . . . . . . . . 9 ((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → ∀𝑥 ∈ (𝑦𝐴) ¬ (𝑥 ∩ (𝑦𝐴)) = ∅)
21 ralnex 3167 . . . . . . . . 9 (∀𝑥 ∈ (𝑦𝐴) ¬ (𝑥 ∩ (𝑦𝐴)) = ∅ ↔ ¬ ∃𝑥 ∈ (𝑦𝐴)(𝑥 ∩ (𝑦𝐴)) = ∅)
2220, 21sylib 217 . . . . . . . 8 ((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → ¬ ∃𝑥 ∈ (𝑦𝐴)(𝑥 ∩ (𝑦𝐴)) = ∅)
23 vex 3436 . . . . . . . . . . 11 𝑦 ∈ V
2423difexi 5252 . . . . . . . . . 10 (𝑦𝐴) ∈ V
25 zfreg 9354 . . . . . . . . . 10 (((𝑦𝐴) ∈ V ∧ (𝑦𝐴) ≠ ∅) → ∃𝑥 ∈ (𝑦𝐴)(𝑥 ∩ (𝑦𝐴)) = ∅)
2624, 25mpan 687 . . . . . . . . 9 ((𝑦𝐴) ≠ ∅ → ∃𝑥 ∈ (𝑦𝐴)(𝑥 ∩ (𝑦𝐴)) = ∅)
2726necon1bi 2972 . . . . . . . 8 (¬ ∃𝑥 ∈ (𝑦𝐴)(𝑥 ∩ (𝑦𝐴)) = ∅ → (𝑦𝐴) = ∅)
2822, 27syl 17 . . . . . . 7 ((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → (𝑦𝐴) = ∅)
29 ssdif0 4297 . . . . . . 7 (𝑦𝐴 ↔ (𝑦𝐴) = ∅)
3028, 29sylibr 233 . . . . . 6 ((Tr 𝑦 ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → 𝑦𝐴)
3130adantlr 712 . . . . 5 (((Tr 𝑦𝐵𝑦) ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → 𝑦𝐴)
32 simplr 766 . . . . 5 (((Tr 𝑦𝐵𝑦) ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → 𝐵𝑦)
3331, 32sseldd 3922 . . . 4 (((Tr 𝑦𝐵𝑦) ∧ ∀𝑥(𝑥𝐴𝑥𝐴)) → 𝐵𝐴)
3433ex 413 . . 3 ((Tr 𝑦𝐵𝑦) → (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐵𝐴))
3534exlimiv 1933 . 2 (∃𝑦(Tr 𝑦𝐵𝑦) → (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐵𝐴))
3635com12 32 1 (∀𝑥(𝑥𝐴𝑥𝐴) → (∃𝑦(Tr 𝑦𝐵𝑦) → 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cin 3886  wss 3887  c0 4256  Tr wtr 5191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-reg 9351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-uni 4840  df-tr 5192
This theorem is referenced by:  setindtrs  40847
  Copyright terms: Public domain W3C validator