MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem3 Structured version   Visualization version   GIF version

Theorem inf3lem3 9583
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9588 for detailed description. In the proof, we invoke the Axiom of Regularity in the form of zfreg 9548. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 inf3lem.1 . . . 4 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 inf3lem.2 . . . 4 𝐹 = (rec(𝐺, ∅) ↾ ω)
3 inf3lem.3 . . . 4 𝐴 ∈ V
4 inf3lem.4 . . . 4 𝐵 ∈ V
51, 2, 3, 4inf3lemd 9580 . . 3 (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥)
61, 2, 3, 4inf3lem2 9582 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
76com12 32 . . 3 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥))
8 pssdifn0 4331 . . 3 (((𝐹𝐴) ⊆ 𝑥 ∧ (𝐹𝐴) ≠ 𝑥) → (𝑥 ∖ (𝐹𝐴)) ≠ ∅)
95, 7, 8syl6an 684 . 2 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝑥 ∖ (𝐹𝐴)) ≠ ∅))
10 vex 3451 . . . . 5 𝑥 ∈ V
1110difexi 5285 . . . 4 (𝑥 ∖ (𝐹𝐴)) ∈ V
12 zfreg 9548 . . . 4 (((𝑥 ∖ (𝐹𝐴)) ∈ V ∧ (𝑥 ∖ (𝐹𝐴)) ≠ ∅) → ∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
1311, 12mpan 690 . . 3 ((𝑥 ∖ (𝐹𝐴)) ≠ ∅ → ∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
14 eldifi 4094 . . . . . . . . . 10 (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → 𝑣𝑥)
15 inssdif0 4337 . . . . . . . . . . 11 ((𝑣𝑥) ⊆ (𝐹𝐴) ↔ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
1615biimpri 228 . . . . . . . . . 10 ((𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝑣𝑥) ⊆ (𝐹𝐴))
1714, 16anim12i 613 . . . . . . . . 9 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝐴)))
18 vex 3451 . . . . . . . . . 10 𝑣 ∈ V
19 fvex 6871 . . . . . . . . . 10 (𝐹𝐴) ∈ V
201, 2, 18, 19inf3lema 9577 . . . . . . . . 9 (𝑣 ∈ (𝐺‘(𝐹𝐴)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝐴)))
2117, 20sylibr 234 . . . . . . . 8 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → 𝑣 ∈ (𝐺‘(𝐹𝐴)))
221, 2, 3, 4inf3lemc 9579 . . . . . . . . 9 (𝐴 ∈ ω → (𝐹‘suc 𝐴) = (𝐺‘(𝐹𝐴)))
2322eleq2d 2814 . . . . . . . 8 (𝐴 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝐴) ↔ 𝑣 ∈ (𝐺‘(𝐹𝐴))))
2421, 23imbitrrid 246 . . . . . . 7 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → 𝑣 ∈ (𝐹‘suc 𝐴)))
25 eldifn 4095 . . . . . . . 8 (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → ¬ 𝑣 ∈ (𝐹𝐴))
2625adantr 480 . . . . . . 7 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → ¬ 𝑣 ∈ (𝐹𝐴))
2724, 26jca2 513 . . . . . 6 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴))))
28 eleq2 2817 . . . . . . . . 9 ((𝐹𝐴) = (𝐹‘suc 𝐴) → (𝑣 ∈ (𝐹𝐴) ↔ 𝑣 ∈ (𝐹‘suc 𝐴)))
2928biimprd 248 . . . . . . . 8 ((𝐹𝐴) = (𝐹‘suc 𝐴) → (𝑣 ∈ (𝐹‘suc 𝐴) → 𝑣 ∈ (𝐹𝐴)))
30 iman 401 . . . . . . . 8 ((𝑣 ∈ (𝐹‘suc 𝐴) → 𝑣 ∈ (𝐹𝐴)) ↔ ¬ (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)))
3129, 30sylib 218 . . . . . . 7 ((𝐹𝐴) = (𝐹‘suc 𝐴) → ¬ (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)))
3231necon2ai 2954 . . . . . 6 ((𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)) → (𝐹𝐴) ≠ (𝐹‘suc 𝐴))
3327, 32syl6 35 . . . . 5 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
3433expd 415 . . . 4 (𝐴 ∈ ω → (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → ((𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴))))
3534rexlimdv 3132 . . 3 (𝐴 ∈ ω → (∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
3613, 35syl5 34 . 2 (𝐴 ∈ ω → ((𝑥 ∖ (𝐹𝐴)) ≠ ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
379, 36syldc 48 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  cin 3913  wss 3914  c0 4296   cuni 4871  cmpt 5188  cres 5640  suc csuc 6334  cfv 6511  ωcom 7842  reccrdg 8377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-reg 9545
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378
This theorem is referenced by:  inf3lem4  9584
  Copyright terms: Public domain W3C validator