Step | Hyp | Ref
| Expression |
1 | | inf3lem.1 |
. . . 4
⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
2 | | inf3lem.2 |
. . . 4
⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
3 | | inf3lem.3 |
. . . 4
⊢ 𝐴 ∈ V |
4 | | inf3lem.4 |
. . . 4
⊢ 𝐵 ∈ V |
5 | 1, 2, 3, 4 | inf3lemd 9315 |
. . 3
⊢ (𝐴 ∈ ω → (𝐹‘𝐴) ⊆ 𝑥) |
6 | 1, 2, 3, 4 | inf3lem2 9317 |
. . . 4
⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)
→ (𝐴 ∈ ω
→ (𝐹‘𝐴) ≠ 𝑥)) |
7 | 6 | com12 32 |
. . 3
⊢ (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)
→ (𝐹‘𝐴) ≠ 𝑥)) |
8 | | pssdifn0 4296 |
. . 3
⊢ (((𝐹‘𝐴) ⊆ 𝑥 ∧ (𝐹‘𝐴) ≠ 𝑥) → (𝑥 ∖ (𝐹‘𝐴)) ≠ ∅) |
9 | 5, 7, 8 | syl6an 680 |
. 2
⊢ (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)
→ (𝑥 ∖ (𝐹‘𝐴)) ≠ ∅)) |
10 | | vex 3426 |
. . . . 5
⊢ 𝑥 ∈ V |
11 | 10 | difexi 5247 |
. . . 4
⊢ (𝑥 ∖ (𝐹‘𝐴)) ∈ V |
12 | | zfreg 9284 |
. . . 4
⊢ (((𝑥 ∖ (𝐹‘𝐴)) ∈ V ∧ (𝑥 ∖ (𝐹‘𝐴)) ≠ ∅) → ∃𝑣 ∈ (𝑥 ∖ (𝐹‘𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹‘𝐴))) = ∅) |
13 | 11, 12 | mpan 686 |
. . 3
⊢ ((𝑥 ∖ (𝐹‘𝐴)) ≠ ∅ → ∃𝑣 ∈ (𝑥 ∖ (𝐹‘𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹‘𝐴))) = ∅) |
14 | | eldifi 4057 |
. . . . . . . . . 10
⊢ (𝑣 ∈ (𝑥 ∖ (𝐹‘𝐴)) → 𝑣 ∈ 𝑥) |
15 | | inssdif0 4300 |
. . . . . . . . . . 11
⊢ ((𝑣 ∩ 𝑥) ⊆ (𝐹‘𝐴) ↔ (𝑣 ∩ (𝑥 ∖ (𝐹‘𝐴))) = ∅) |
16 | 15 | biimpri 227 |
. . . . . . . . . 10
⊢ ((𝑣 ∩ (𝑥 ∖ (𝐹‘𝐴))) = ∅ → (𝑣 ∩ 𝑥) ⊆ (𝐹‘𝐴)) |
17 | 14, 16 | anim12i 612 |
. . . . . . . . 9
⊢ ((𝑣 ∈ (𝑥 ∖ (𝐹‘𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹‘𝐴))) = ∅) → (𝑣 ∈ 𝑥 ∧ (𝑣 ∩ 𝑥) ⊆ (𝐹‘𝐴))) |
18 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑣 ∈ V |
19 | | fvex 6769 |
. . . . . . . . . 10
⊢ (𝐹‘𝐴) ∈ V |
20 | 1, 2, 18, 19 | inf3lema 9312 |
. . . . . . . . 9
⊢ (𝑣 ∈ (𝐺‘(𝐹‘𝐴)) ↔ (𝑣 ∈ 𝑥 ∧ (𝑣 ∩ 𝑥) ⊆ (𝐹‘𝐴))) |
21 | 17, 20 | sylibr 233 |
. . . . . . . 8
⊢ ((𝑣 ∈ (𝑥 ∖ (𝐹‘𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹‘𝐴))) = ∅) → 𝑣 ∈ (𝐺‘(𝐹‘𝐴))) |
22 | 1, 2, 3, 4 | inf3lemc 9314 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → (𝐹‘suc 𝐴) = (𝐺‘(𝐹‘𝐴))) |
23 | 22 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝐴 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝐴) ↔ 𝑣 ∈ (𝐺‘(𝐹‘𝐴)))) |
24 | 21, 23 | syl5ibr 245 |
. . . . . . 7
⊢ (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹‘𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹‘𝐴))) = ∅) → 𝑣 ∈ (𝐹‘suc 𝐴))) |
25 | | eldifn 4058 |
. . . . . . . 8
⊢ (𝑣 ∈ (𝑥 ∖ (𝐹‘𝐴)) → ¬ 𝑣 ∈ (𝐹‘𝐴)) |
26 | 25 | adantr 480 |
. . . . . . 7
⊢ ((𝑣 ∈ (𝑥 ∖ (𝐹‘𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹‘𝐴))) = ∅) → ¬ 𝑣 ∈ (𝐹‘𝐴)) |
27 | 24, 26 | jca2 513 |
. . . . . 6
⊢ (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹‘𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹‘𝐴))) = ∅) → (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹‘𝐴)))) |
28 | | eleq2 2827 |
. . . . . . . . 9
⊢ ((𝐹‘𝐴) = (𝐹‘suc 𝐴) → (𝑣 ∈ (𝐹‘𝐴) ↔ 𝑣 ∈ (𝐹‘suc 𝐴))) |
29 | 28 | biimprd 247 |
. . . . . . . 8
⊢ ((𝐹‘𝐴) = (𝐹‘suc 𝐴) → (𝑣 ∈ (𝐹‘suc 𝐴) → 𝑣 ∈ (𝐹‘𝐴))) |
30 | | iman 401 |
. . . . . . . 8
⊢ ((𝑣 ∈ (𝐹‘suc 𝐴) → 𝑣 ∈ (𝐹‘𝐴)) ↔ ¬ (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹‘𝐴))) |
31 | 29, 30 | sylib 217 |
. . . . . . 7
⊢ ((𝐹‘𝐴) = (𝐹‘suc 𝐴) → ¬ (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹‘𝐴))) |
32 | 31 | necon2ai 2972 |
. . . . . 6
⊢ ((𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹‘𝐴)) → (𝐹‘𝐴) ≠ (𝐹‘suc 𝐴)) |
33 | 27, 32 | syl6 35 |
. . . . 5
⊢ (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹‘𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹‘𝐴))) = ∅) → (𝐹‘𝐴) ≠ (𝐹‘suc 𝐴))) |
34 | 33 | expd 415 |
. . . 4
⊢ (𝐴 ∈ ω → (𝑣 ∈ (𝑥 ∖ (𝐹‘𝐴)) → ((𝑣 ∩ (𝑥 ∖ (𝐹‘𝐴))) = ∅ → (𝐹‘𝐴) ≠ (𝐹‘suc 𝐴)))) |
35 | 34 | rexlimdv 3211 |
. . 3
⊢ (𝐴 ∈ ω →
(∃𝑣 ∈ (𝑥 ∖ (𝐹‘𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹‘𝐴))) = ∅ → (𝐹‘𝐴) ≠ (𝐹‘suc 𝐴))) |
36 | 13, 35 | syl5 34 |
. 2
⊢ (𝐴 ∈ ω → ((𝑥 ∖ (𝐹‘𝐴)) ≠ ∅ → (𝐹‘𝐴) ≠ (𝐹‘suc 𝐴))) |
37 | 9, 36 | syldc 48 |
1
⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥)
→ (𝐴 ∈ ω
→ (𝐹‘𝐴) ≠ (𝐹‘suc 𝐴))) |