MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem3 Structured version   Visualization version   GIF version

Theorem inf3lem3 9531
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9536 for detailed description. In the proof, we invoke the Axiom of Regularity in the form of zfreg 9493. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 inf3lem.1 . . . 4 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 inf3lem.2 . . . 4 𝐹 = (rec(𝐺, ∅) ↾ ω)
3 inf3lem.3 . . . 4 𝐴 ∈ V
4 inf3lem.4 . . . 4 𝐵 ∈ V
51, 2, 3, 4inf3lemd 9528 . . 3 (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥)
61, 2, 3, 4inf3lem2 9530 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
76com12 32 . . 3 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥))
8 pssdifn0 4317 . . 3 (((𝐹𝐴) ⊆ 𝑥 ∧ (𝐹𝐴) ≠ 𝑥) → (𝑥 ∖ (𝐹𝐴)) ≠ ∅)
95, 7, 8syl6an 684 . 2 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝑥 ∖ (𝐹𝐴)) ≠ ∅))
10 vex 3441 . . . . 5 𝑥 ∈ V
1110difexi 5272 . . . 4 (𝑥 ∖ (𝐹𝐴)) ∈ V
12 zfreg 9493 . . . 4 (((𝑥 ∖ (𝐹𝐴)) ∈ V ∧ (𝑥 ∖ (𝐹𝐴)) ≠ ∅) → ∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
1311, 12mpan 690 . . 3 ((𝑥 ∖ (𝐹𝐴)) ≠ ∅ → ∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
14 eldifi 4080 . . . . . . . . . 10 (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → 𝑣𝑥)
15 inssdif0 4323 . . . . . . . . . . 11 ((𝑣𝑥) ⊆ (𝐹𝐴) ↔ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
1615biimpri 228 . . . . . . . . . 10 ((𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝑣𝑥) ⊆ (𝐹𝐴))
1714, 16anim12i 613 . . . . . . . . 9 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝐴)))
18 vex 3441 . . . . . . . . . 10 𝑣 ∈ V
19 fvex 6844 . . . . . . . . . 10 (𝐹𝐴) ∈ V
201, 2, 18, 19inf3lema 9525 . . . . . . . . 9 (𝑣 ∈ (𝐺‘(𝐹𝐴)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝐴)))
2117, 20sylibr 234 . . . . . . . 8 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → 𝑣 ∈ (𝐺‘(𝐹𝐴)))
221, 2, 3, 4inf3lemc 9527 . . . . . . . . 9 (𝐴 ∈ ω → (𝐹‘suc 𝐴) = (𝐺‘(𝐹𝐴)))
2322eleq2d 2819 . . . . . . . 8 (𝐴 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝐴) ↔ 𝑣 ∈ (𝐺‘(𝐹𝐴))))
2421, 23imbitrrid 246 . . . . . . 7 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → 𝑣 ∈ (𝐹‘suc 𝐴)))
25 eldifn 4081 . . . . . . . 8 (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → ¬ 𝑣 ∈ (𝐹𝐴))
2625adantr 480 . . . . . . 7 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → ¬ 𝑣 ∈ (𝐹𝐴))
2724, 26jca2 513 . . . . . 6 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴))))
28 eleq2 2822 . . . . . . . . 9 ((𝐹𝐴) = (𝐹‘suc 𝐴) → (𝑣 ∈ (𝐹𝐴) ↔ 𝑣 ∈ (𝐹‘suc 𝐴)))
2928biimprd 248 . . . . . . . 8 ((𝐹𝐴) = (𝐹‘suc 𝐴) → (𝑣 ∈ (𝐹‘suc 𝐴) → 𝑣 ∈ (𝐹𝐴)))
30 iman 401 . . . . . . . 8 ((𝑣 ∈ (𝐹‘suc 𝐴) → 𝑣 ∈ (𝐹𝐴)) ↔ ¬ (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)))
3129, 30sylib 218 . . . . . . 7 ((𝐹𝐴) = (𝐹‘suc 𝐴) → ¬ (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)))
3231necon2ai 2958 . . . . . 6 ((𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)) → (𝐹𝐴) ≠ (𝐹‘suc 𝐴))
3327, 32syl6 35 . . . . 5 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
3433expd 415 . . . 4 (𝐴 ∈ ω → (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → ((𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴))))
3534rexlimdv 3132 . . 3 (𝐴 ∈ ω → (∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
3613, 35syl5 34 . 2 (𝐴 ∈ ω → ((𝑥 ∖ (𝐹𝐴)) ≠ ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
379, 36syldc 48 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057  {crab 3396  Vcvv 3437  cdif 3895  cin 3897  wss 3898  c0 4282   cuni 4860  cmpt 5176  cres 5623  suc csuc 6316  cfv 6489  ωcom 7805  reccrdg 8337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677  ax-reg 9489
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338
This theorem is referenced by:  inf3lem4  9532
  Copyright terms: Public domain W3C validator