MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem3 Structured version   Visualization version   GIF version

Theorem inf3lem3 9661
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9666 for detailed description. In the proof, we invoke the Axiom of Regularity in the form of zfreg 9626. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem3 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem3
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 inf3lem.1 . . . 4 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
2 inf3lem.2 . . . 4 𝐹 = (rec(𝐺, ∅) ↾ ω)
3 inf3lem.3 . . . 4 𝐴 ∈ V
4 inf3lem.4 . . . 4 𝐵 ∈ V
51, 2, 3, 4inf3lemd 9658 . . 3 (𝐴 ∈ ω → (𝐹𝐴) ⊆ 𝑥)
61, 2, 3, 4inf3lem2 9660 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ 𝑥))
76com12 32 . . 3 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐴) ≠ 𝑥))
8 pssdifn0 4369 . . 3 (((𝐹𝐴) ⊆ 𝑥 ∧ (𝐹𝐴) ≠ 𝑥) → (𝑥 ∖ (𝐹𝐴)) ≠ ∅)
95, 7, 8syl6an 682 . 2 (𝐴 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝑥 ∖ (𝐹𝐴)) ≠ ∅))
10 vex 3477 . . . . 5 𝑥 ∈ V
1110difexi 5334 . . . 4 (𝑥 ∖ (𝐹𝐴)) ∈ V
12 zfreg 9626 . . . 4 (((𝑥 ∖ (𝐹𝐴)) ∈ V ∧ (𝑥 ∖ (𝐹𝐴)) ≠ ∅) → ∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
1311, 12mpan 688 . . 3 ((𝑥 ∖ (𝐹𝐴)) ≠ ∅ → ∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
14 eldifi 4127 . . . . . . . . . 10 (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → 𝑣𝑥)
15 inssdif0 4373 . . . . . . . . . . 11 ((𝑣𝑥) ⊆ (𝐹𝐴) ↔ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅)
1615biimpri 227 . . . . . . . . . 10 ((𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝑣𝑥) ⊆ (𝐹𝐴))
1714, 16anim12i 611 . . . . . . . . 9 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝐴)))
18 vex 3477 . . . . . . . . . 10 𝑣 ∈ V
19 fvex 6915 . . . . . . . . . 10 (𝐹𝐴) ∈ V
201, 2, 18, 19inf3lema 9655 . . . . . . . . 9 (𝑣 ∈ (𝐺‘(𝐹𝐴)) ↔ (𝑣𝑥 ∧ (𝑣𝑥) ⊆ (𝐹𝐴)))
2117, 20sylibr 233 . . . . . . . 8 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → 𝑣 ∈ (𝐺‘(𝐹𝐴)))
221, 2, 3, 4inf3lemc 9657 . . . . . . . . 9 (𝐴 ∈ ω → (𝐹‘suc 𝐴) = (𝐺‘(𝐹𝐴)))
2322eleq2d 2815 . . . . . . . 8 (𝐴 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝐴) ↔ 𝑣 ∈ (𝐺‘(𝐹𝐴))))
2421, 23imbitrrid 245 . . . . . . 7 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → 𝑣 ∈ (𝐹‘suc 𝐴)))
25 eldifn 4128 . . . . . . . 8 (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → ¬ 𝑣 ∈ (𝐹𝐴))
2625adantr 479 . . . . . . 7 ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → ¬ 𝑣 ∈ (𝐹𝐴))
2724, 26jca2 512 . . . . . 6 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴))))
28 eleq2 2818 . . . . . . . . 9 ((𝐹𝐴) = (𝐹‘suc 𝐴) → (𝑣 ∈ (𝐹𝐴) ↔ 𝑣 ∈ (𝐹‘suc 𝐴)))
2928biimprd 247 . . . . . . . 8 ((𝐹𝐴) = (𝐹‘suc 𝐴) → (𝑣 ∈ (𝐹‘suc 𝐴) → 𝑣 ∈ (𝐹𝐴)))
30 iman 400 . . . . . . . 8 ((𝑣 ∈ (𝐹‘suc 𝐴) → 𝑣 ∈ (𝐹𝐴)) ↔ ¬ (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)))
3129, 30sylib 217 . . . . . . 7 ((𝐹𝐴) = (𝐹‘suc 𝐴) → ¬ (𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)))
3231necon2ai 2967 . . . . . 6 ((𝑣 ∈ (𝐹‘suc 𝐴) ∧ ¬ 𝑣 ∈ (𝐹𝐴)) → (𝐹𝐴) ≠ (𝐹‘suc 𝐴))
3327, 32syl6 35 . . . . 5 (𝐴 ∈ ω → ((𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) ∧ (𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅) → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
3433expd 414 . . . 4 (𝐴 ∈ ω → (𝑣 ∈ (𝑥 ∖ (𝐹𝐴)) → ((𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴))))
3534rexlimdv 3150 . . 3 (𝐴 ∈ ω → (∃𝑣 ∈ (𝑥 ∖ (𝐹𝐴))(𝑣 ∩ (𝑥 ∖ (𝐹𝐴))) = ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
3613, 35syl5 34 . 2 (𝐴 ∈ ω → ((𝑥 ∖ (𝐹𝐴)) ≠ ∅ → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
379, 36syldc 48 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐴 ∈ ω → (𝐹𝐴) ≠ (𝐹‘suc 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2937  wrex 3067  {crab 3430  Vcvv 3473  cdif 3946  cin 3948  wss 3949  c0 4326   cuni 4912  cmpt 5235  cres 5684  suc csuc 6376  cfv 6553  ωcom 7876  reccrdg 8436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-un 7746  ax-reg 9623
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437
This theorem is referenced by:  inf3lem4  9662
  Copyright terms: Public domain W3C validator