Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zxrd Structured version   Visualization version   GIF version

Theorem zxrd 45370
Description: An integer is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
zxrd.1 (𝜑𝐴 ∈ ℤ)
Assertion
Ref Expression
zxrd (𝜑𝐴 ∈ ℝ*)

Proof of Theorem zxrd
StepHypRef Expression
1 zxrd.1 . . 3 (𝜑𝐴 ∈ ℤ)
21zred 12749 . 2 (𝜑𝐴 ∈ ℝ)
32rexrd 11342 1 (𝜑𝐴 ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  *cxr 11325  cz 12641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6527  df-fv 6583  df-ov 7453  df-xr 11330  df-neg 11525  df-z 12642
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator