Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zxrd Structured version   Visualization version   GIF version

Theorem zxrd 43337
Description: An integer is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
zxrd.1 (𝜑𝐴 ∈ ℤ)
Assertion
Ref Expression
zxrd (𝜑𝐴 ∈ ℝ*)

Proof of Theorem zxrd
StepHypRef Expression
1 zxrd.1 . . 3 (𝜑𝐴 ∈ ℤ)
21zred 12527 . 2 (𝜑𝐴 ∈ ℝ)
32rexrd 11126 1 (𝜑𝐴 ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  *cxr 11109  cz 12420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-iota 6431  df-fv 6487  df-ov 7340  df-xr 11114  df-neg 11309  df-z 12421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator