Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrgelbrnmpt Structured version   Visualization version   GIF version

Theorem infxrgelbrnmpt 42884
Description: The infimum of an indexed set of extended reals is greater than or equal to a lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
infxrgelbrnmpt.x 𝑥𝜑
infxrgelbrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
infxrgelbrnmpt.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
infxrgelbrnmpt (𝜑 → (𝐶 ≤ inf(ran (𝑥𝐴𝐵), ℝ*, < ) ↔ ∀𝑥𝐴 𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem infxrgelbrnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 infxrgelbrnmpt.x . . . 4 𝑥𝜑
2 eqid 2738 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 infxrgelbrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
41, 2, 3rnmptssd 42624 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
5 infxrgelbrnmpt.c . . 3 (𝜑𝐶 ∈ ℝ*)
6 infxrgelb 12998 . . 3 ((ran (𝑥𝐴𝐵) ⊆ ℝ*𝐶 ∈ ℝ*) → (𝐶 ≤ inf(ran (𝑥𝐴𝐵), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧))
74, 5, 6syl2anc 583 . 2 (𝜑 → (𝐶 ≤ inf(ran (𝑥𝐴𝐵), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧))
8 nfmpt1 5178 . . . . . . 7 𝑥(𝑥𝐴𝐵)
98nfrn 5850 . . . . . 6 𝑥ran (𝑥𝐴𝐵)
10 nfv 1918 . . . . . 6 𝑥 𝐶𝑧
119, 10nfralw 3149 . . . . 5 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧
121, 11nfan 1903 . . . 4 𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧)
13 simpr 484 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥𝐴)
142elrnmpt1 5856 . . . . . . . 8 ((𝑥𝐴𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥𝐴𝐵))
1513, 3, 14syl2anc 583 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
1615adantlr 711 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
17 simplr 765 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) ∧ 𝑥𝐴) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧)
18 breq2 5074 . . . . . . 7 (𝑧 = 𝐵 → (𝐶𝑧𝐶𝐵))
1918rspcva 3550 . . . . . 6 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) → 𝐶𝐵)
2016, 17, 19syl2anc 583 . . . . 5 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) ∧ 𝑥𝐴) → 𝐶𝐵)
2120ex 412 . . . 4 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) → (𝑥𝐴𝐶𝐵))
2212, 21ralrimi 3139 . . 3 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) → ∀𝑥𝐴 𝐶𝐵)
23 vex 3426 . . . . . . . . 9 𝑧 ∈ V
242elrnmpt 5854 . . . . . . . . 9 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
2523, 24ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
2625biimpi 215 . . . . . . 7 (𝑧 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
2726adantl 481 . . . . . 6 ((∀𝑥𝐴 𝐶𝐵𝑧 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑧 = 𝐵)
28 nfra1 3142 . . . . . . . 8 𝑥𝑥𝐴 𝐶𝐵
29 rspa 3130 . . . . . . . . . 10 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → 𝐶𝐵)
3018biimprcd 249 . . . . . . . . . 10 (𝐶𝐵 → (𝑧 = 𝐵𝐶𝑧))
3129, 30syl 17 . . . . . . . . 9 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → (𝑧 = 𝐵𝐶𝑧))
3231ex 412 . . . . . . . 8 (∀𝑥𝐴 𝐶𝐵 → (𝑥𝐴 → (𝑧 = 𝐵𝐶𝑧)))
3328, 10, 32rexlimd 3245 . . . . . . 7 (∀𝑥𝐴 𝐶𝐵 → (∃𝑥𝐴 𝑧 = 𝐵𝐶𝑧))
3433adantr 480 . . . . . 6 ((∀𝑥𝐴 𝐶𝐵𝑧 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 𝑧 = 𝐵𝐶𝑧))
3527, 34mpd 15 . . . . 5 ((∀𝑥𝐴 𝐶𝐵𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝐶𝑧)
3635ralrimiva 3107 . . . 4 (∀𝑥𝐴 𝐶𝐵 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧)
3736adantl 481 . . 3 ((𝜑 ∧ ∀𝑥𝐴 𝐶𝐵) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧)
3822, 37impbida 797 . 2 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧 ↔ ∀𝑥𝐴 𝐶𝐵))
397, 38bitrd 278 1 (𝜑 → (𝐶 ≤ inf(ran (𝑥𝐴𝐵), ℝ*, < ) ↔ ∀𝑥𝐴 𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  ran crn 5581  infcinf 9130  *cxr 10939   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator