Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrgelbrnmpt Structured version   Visualization version   GIF version

Theorem infxrgelbrnmpt 42953
Description: The infimum of an indexed set of extended reals is greater than or equal to a lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
infxrgelbrnmpt.x 𝑥𝜑
infxrgelbrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
infxrgelbrnmpt.c (𝜑𝐶 ∈ ℝ*)
Assertion
Ref Expression
infxrgelbrnmpt (𝜑 → (𝐶 ≤ inf(ran (𝑥𝐴𝐵), ℝ*, < ) ↔ ∀𝑥𝐴 𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem infxrgelbrnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 infxrgelbrnmpt.x . . . 4 𝑥𝜑
2 eqid 2738 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 infxrgelbrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
41, 2, 3rnmptssd 42694 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
5 infxrgelbrnmpt.c . . 3 (𝜑𝐶 ∈ ℝ*)
6 infxrgelb 13057 . . 3 ((ran (𝑥𝐴𝐵) ⊆ ℝ*𝐶 ∈ ℝ*) → (𝐶 ≤ inf(ran (𝑥𝐴𝐵), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧))
74, 5, 6syl2anc 584 . 2 (𝜑 → (𝐶 ≤ inf(ran (𝑥𝐴𝐵), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧))
8 nfmpt1 5182 . . . . . . 7 𝑥(𝑥𝐴𝐵)
98nfrn 5855 . . . . . 6 𝑥ran (𝑥𝐴𝐵)
10 nfv 1917 . . . . . 6 𝑥 𝐶𝑧
119, 10nfralw 3150 . . . . 5 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧
121, 11nfan 1902 . . . 4 𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧)
13 simpr 485 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥𝐴)
142elrnmpt1 5861 . . . . . . . 8 ((𝑥𝐴𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥𝐴𝐵))
1513, 3, 14syl2anc 584 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
1615adantlr 712 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
17 simplr 766 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) ∧ 𝑥𝐴) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧)
18 breq2 5078 . . . . . . 7 (𝑧 = 𝐵 → (𝐶𝑧𝐶𝐵))
1918rspcva 3558 . . . . . 6 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) → 𝐶𝐵)
2016, 17, 19syl2anc 584 . . . . 5 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) ∧ 𝑥𝐴) → 𝐶𝐵)
2120ex 413 . . . 4 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) → (𝑥𝐴𝐶𝐵))
2212, 21ralrimi 3140 . . 3 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧) → ∀𝑥𝐴 𝐶𝐵)
23 vex 3434 . . . . . . . . 9 𝑧 ∈ V
242elrnmpt 5859 . . . . . . . . 9 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
2523, 24ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
2625biimpi 215 . . . . . . 7 (𝑧 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
2726adantl 482 . . . . . 6 ((∀𝑥𝐴 𝐶𝐵𝑧 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑧 = 𝐵)
28 nfra1 3143 . . . . . . . 8 𝑥𝑥𝐴 𝐶𝐵
29 rspa 3131 . . . . . . . . . 10 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → 𝐶𝐵)
3018biimprcd 249 . . . . . . . . . 10 (𝐶𝐵 → (𝑧 = 𝐵𝐶𝑧))
3129, 30syl 17 . . . . . . . . 9 ((∀𝑥𝐴 𝐶𝐵𝑥𝐴) → (𝑧 = 𝐵𝐶𝑧))
3231ex 413 . . . . . . . 8 (∀𝑥𝐴 𝐶𝐵 → (𝑥𝐴 → (𝑧 = 𝐵𝐶𝑧)))
3328, 10, 32rexlimd 3248 . . . . . . 7 (∀𝑥𝐴 𝐶𝐵 → (∃𝑥𝐴 𝑧 = 𝐵𝐶𝑧))
3433adantr 481 . . . . . 6 ((∀𝑥𝐴 𝐶𝐵𝑧 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 𝑧 = 𝐵𝐶𝑧))
3527, 34mpd 15 . . . . 5 ((∀𝑥𝐴 𝐶𝐵𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝐶𝑧)
3635ralrimiva 3113 . . . 4 (∀𝑥𝐴 𝐶𝐵 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧)
3736adantl 482 . . 3 ((𝜑 ∧ ∀𝑥𝐴 𝐶𝐵) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧)
3822, 37impbida 798 . 2 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝐶𝑧 ↔ ∀𝑥𝐴 𝐶𝐵))
397, 38bitrd 278 1 (𝜑 → (𝐶 ≤ inf(ran (𝑥𝐴𝐵), ℝ*, < ) ↔ ∀𝑥𝐴 𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wnf 1786  wcel 2106  wral 3064  wrex 3065  Vcvv 3430  wss 3887   class class class wbr 5074  cmpt 5157  ran crn 5586  infcinf 9188  *cxr 10996   < clt 10997  cle 10998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936  ax-pre-sup 10937
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-po 5499  df-so 5500  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-sup 9189  df-inf 9190  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator