| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexrd | Structured version Visualization version GIF version | ||
| Description: A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rexrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rexrd | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 11305 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 2 | rexrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | 1, 2 | sselid 3981 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Copyright terms: Public domain | W3C validator |