| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nleltd | Structured version Visualization version GIF version | ||
| Description: 'Not less than or equal to' implies 'grater than'. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| nleltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| nleltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| nleltd.3 | ⊢ (𝜑 → ¬ 𝐵 ≤ 𝐴) |
| Ref | Expression |
|---|---|
| nleltd | ⊢ (𝜑 → 𝐴 < 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nleltd.3 | . 2 ⊢ (𝜑 → ¬ 𝐵 ≤ 𝐴) | |
| 2 | nleltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | nleltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 2, 3 | ltnled 11270 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 < 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 class class class wbr 5095 ℝcr 11015 < clt 11156 ≤ cle 11157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-xr 11160 df-le 11162 |
| This theorem is referenced by: limsup10exlem 45884 |
| Copyright terms: Public domain | W3C validator |