Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nleltd Structured version   Visualization version   GIF version

Theorem nleltd 45564
Description: 'Not less than or equal to' implies 'grater than'. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
nleltd.1 (𝜑𝐴 ∈ ℝ)
nleltd.2 (𝜑𝐵 ∈ ℝ)
nleltd.3 (𝜑 → ¬ 𝐵𝐴)
Assertion
Ref Expression
nleltd (𝜑𝐴 < 𝐵)

Proof of Theorem nleltd
StepHypRef Expression
1 nleltd.3 . 2 (𝜑 → ¬ 𝐵𝐴)
2 nleltd.1 . . 3 (𝜑𝐴 ∈ ℝ)
3 nleltd.2 . . 3 (𝜑𝐵 ∈ ℝ)
42, 3ltnled 11270 . 2 (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
51, 4mpbird 257 1 (𝜑𝐴 < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2113   class class class wbr 5095  cr 11015   < clt 11156  cle 11157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-xr 11160  df-le 11162
This theorem is referenced by:  limsup10exlem  45884
  Copyright terms: Public domain W3C validator