Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nleltd | Structured version Visualization version GIF version |
Description: 'Not less than or equal to' implies 'grater than'. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
nleltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
nleltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
nleltd.3 | ⊢ (𝜑 → ¬ 𝐵 ≤ 𝐴) |
Ref | Expression |
---|---|
nleltd | ⊢ (𝜑 → 𝐴 < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nleltd.3 | . 2 ⊢ (𝜑 → ¬ 𝐵 ≤ 𝐴) | |
2 | nleltd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | nleltd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 2, 3 | ltnled 11223 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
5 | 1, 4 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2105 class class class wbr 5092 ℝcr 10971 < clt 11110 ≤ cle 11111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-xp 5626 df-cnv 5628 df-xr 11114 df-le 11116 |
This theorem is referenced by: limsup10exlem 43658 |
Copyright terms: Public domain | W3C validator |