New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfco2 GIF version

Theorem dfco2 5080
 Description: Alternate definition of a class composition, using only one bound variable. (Contributed by set.mm contributors, 19-Dec-2008.)
Assertion
Ref Expression
dfco2 (A B) = x V ((B “ {x}) × (A “ {x}))
Distinct variable groups:   x,A   x,B

Proof of Theorem dfco2
Dummy variables y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelco 4884 . . 3 (y, z (A B) ↔ x(yBx xAz))
2 eliun 3973 . . . 4 (y, z x V ((B “ {x}) × (A “ {x})) ↔ x V y, z ((B “ {x}) × (A “ {x})))
3 rexv 2873 . . . 4 (x V y, z ((B “ {x}) × (A “ {x})) ↔ xy, z ((B “ {x}) × (A “ {x})))
4 opelxp 4811 . . . . . 6 (y, z ((B “ {x}) × (A “ {x})) ↔ (y (B “ {x}) z (A “ {x})))
5 eliniseg 5020 . . . . . . 7 (y (B “ {x}) ↔ yBx)
6 elimasn 5019 . . . . . . . 8 (z (A “ {x}) ↔ x, z A)
7 df-br 4640 . . . . . . . 8 (xAzx, z A)
86, 7bitr4i 243 . . . . . . 7 (z (A “ {x}) ↔ xAz)
95, 8anbi12i 678 . . . . . 6 ((y (B “ {x}) z (A “ {x})) ↔ (yBx xAz))
104, 9bitri 240 . . . . 5 (y, z ((B “ {x}) × (A “ {x})) ↔ (yBx xAz))
1110exbii 1582 . . . 4 (xy, z ((B “ {x}) × (A “ {x})) ↔ x(yBx xAz))
122, 3, 113bitrri 263 . . 3 (x(yBx xAz) ↔ y, z x V ((B “ {x}) × (A “ {x})))
131, 12bitri 240 . 2 (y, z (A B) ↔ y, z x V ((B “ {x}) × (A “ {x})))
1413eqrelriv 4850 1 (A B) = x V ((B “ {x}) × (A “ {x}))
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 358  ∃wex 1541   = wceq 1642   ∈ wcel 1710  ∃wrex 2615  Vcvv 2859  {csn 3737  ∪ciun 3969  ⟨cop 4561   class class class wbr 4639   ∘ ccom 4721   “ cima 4722   × cxp 4770  ◡ccnv 4771 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4078  ax-xp 4079  ax-cnv 4080  ax-1c 4081  ax-sset 4082  ax-si 4083  ax-ins2 4084  ax-ins3 4085  ax-typlower 4086  ax-sn 4087 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ne 2518  df-ral 2619  df-rex 2620  df-reu 2621  df-rmo 2622  df-rab 2623  df-v 2861  df-sbc 3047  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-dif 3215  df-symdif 3216  df-ss 3259  df-pss 3261  df-nul 3551  df-if 3663  df-pw 3724  df-sn 3741  df-pr 3742  df-uni 3892  df-int 3927  df-iun 3971  df-opk 4058  df-1c 4136  df-pw1 4137  df-uni1 4138  df-xpk 4185  df-cnvk 4186  df-ins2k 4187  df-ins3k 4188  df-imak 4189  df-cok 4190  df-p6 4191  df-sik 4192  df-ssetk 4193  df-imagek 4194  df-idk 4195  df-iota 4339  df-0c 4377  df-addc 4378  df-nnc 4379  df-fin 4380  df-lefin 4440  df-ltfin 4441  df-ncfin 4442  df-tfin 4443  df-evenfin 4444  df-oddfin 4445  df-sfin 4446  df-spfin 4447  df-phi 4565  df-op 4566  df-proj1 4567  df-proj2 4568  df-opab 4623  df-br 4640  df-co 4726  df-ima 4727  df-xp 4784  df-cnv 4785  df-rn 4786  df-dm 4787  df-res 4788 This theorem is referenced by:  dfco2a  5081
 Copyright terms: Public domain W3C validator