NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mapval2 GIF version

Theorem mapval2 6019
Description: Alternate expression for the value of set exponentiation. (Contributed by set.mm contributors, 3-Nov-2007.)
Hypotheses
Ref Expression
elmap.1 A V
elmap.2 B V
elmap.3 F V
Assertion
Ref Expression
mapval2 (Am B) = ((B × A) ∩ {f f Fn B})
Distinct variable group:   B,f
Allowed substitution hints:   A(f)   F(f)

Proof of Theorem mapval2
Dummy variable g is distinct from all other variables.
StepHypRef Expression
1 dff2 5420 . . . 4 (g:B–→A ↔ (g Fn B g (B × A)))
2 ancom 437 . . . 4 ((g Fn B g (B × A)) ↔ (g (B × A) g Fn B))
31, 2bitri 240 . . 3 (g:B–→A ↔ (g (B × A) g Fn B))
4 elmap.1 . . . 4 A V
5 elmap.2 . . . 4 B V
6 vex 2863 . . . 4 g V
74, 5, 6elmap 6018 . . 3 (g (Am B) ↔ g:B–→A)
8 elin 3220 . . . 4 (g ((B × A) ∩ {f f Fn B}) ↔ (g (B × A) g {f f Fn B}))
96elpw 3729 . . . . 5 (g (B × A) ↔ g (B × A))
10 fneq1 5174 . . . . . 6 (f = g → (f Fn Bg Fn B))
116, 10elab 2986 . . . . 5 (g {f f Fn B} ↔ g Fn B)
129, 11anbi12i 678 . . . 4 ((g (B × A) g {f f Fn B}) ↔ (g (B × A) g Fn B))
138, 12bitri 240 . . 3 (g ((B × A) ∩ {f f Fn B}) ↔ (g (B × A) g Fn B))
143, 7, 133bitr4i 268 . 2 (g (Am B) ↔ g ((B × A) ∩ {f f Fn B}))
1514eqriv 2350 1 (Am B) = ((B × A) ∩ {f f Fn B})
Colors of variables: wff setvar class
Syntax hints:   wa 358   = wceq 1642   wcel 1710  {cab 2339  Vcvv 2860  cin 3209   wss 3258  cpw 3723   × cxp 4771   Fn wfn 4777  –→wf 4778  (class class class)co 5526  m cmap 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-map 6002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator